Matches in SemOpenAlex for { <https://semopenalex.org/work/W2261123995> ?p ?o ?g. }
- W2261123995 abstract "Model checking is an automated technique to verify hardware and software systems formally. Most of the model checking research has focused on developing scalable techniques for verifying large systems. A number of techniques, e.g., symbolic methods, abstractions, compositional reasoning, etc. have been proposed towards this goal. While methods based on symbolic reasoning (using binary decision diagrams or satisfiability solving) and methods based on computing abstractions automatically in a counterexample-driven manner have proved to be useful in verifying hardware and software systems, they do not directly scale to systems with large number of modules or components. The reason is that they try to verify the complete system in a monolithic manner, which inevitably leads to the state-space explosion problem, i.e., there are too many states in the system to explore exhaustively. Compositional reasoning techniques try to address this problem by following a divide-and-conquer approach: the task of system verification is divided into several sub-tasks, each involving a small subset of system components. Assume-Guarantee Reasoning (AGR) is a particular form of compositional verification, where one first generates environment assumptions for a component and then discharges them on its environment (i.e., the other components) separately. Assume-Guarantee Reasoning methods have been mainly studied in a theoretical context traditionally. The central bottleneck in making them practical is the lack of algorithms to automatically compute appropriate environment assumptions for components. A recent approach for computing these assumptions relies on combining machine learning algorithms together with model checking techniques to achieve its goal. The technique uses machine learning algorithms for finite state machines in an iterative counterexample-driven manner, assisted by a model checker. In this thesis, we build an abstract framework for automated AGR based on machine learning algorithms and propose new algorithms for instantiating this framework for several different notions of composition and conformances. In particular, we propose compositional techniques for checking simulation conformance, based on learning regular tree languages, and for checking deadlock based on learning failure languages. Moreover; we present an approach to scale this framework to real-life systems communicating via shared memory by using new algorithms for learning machines with large alphabets together with symbolic model checking. Most industrial hardware and software systems are designed using previously available off-the-shelf components. Such component technologies are gaining acceptance in both hardware and software engineering as effective tools for quickly assembling complex systems from pre-developed components. During their life-cycle, these components may undergo several bug-fixes and upgrades and therefore need to be verified after every such component substitution step. In this thesis, we refer to this problem as checking component substitutability. This problem is pervasive across both software and hardware engineering communities, where a large amount of effort is spent on re-validating systems from scratch after each update. In the thesis, we first formalize the problem for software systems taking into account that evolution of components may involve both addition of new features and removal of old behaviors. Then, we propose a solution based on an incremental automated AGR technique, together with counterexample-driven automated abstraction techniques. The new techniques proposed in this thesis have been implemented and evaluated on both software and hardware benchmarks and are shown to be useful in practice." @default.
- W2261123995 created "2016-06-24" @default.
- W2261123995 creator A5078587812 @default.
- W2261123995 creator A5090974026 @default.
- W2261123995 date "2007-01-01" @default.
- W2261123995 modified "2023-09-22" @default.
- W2261123995 title "Automated compositional analysis for checking component substitutability" @default.
- W2261123995 cites W1482663303 @default.
- W2261123995 cites W1485489137 @default.
- W2261123995 cites W1488659932 @default.
- W2261123995 cites W1495266209 @default.
- W2261123995 cites W1497571013 @default.
- W2261123995 cites W1498760855 @default.
- W2261123995 cites W1499937701 @default.
- W2261123995 cites W1500286044 @default.
- W2261123995 cites W1503973138 @default.
- W2261123995 cites W1508602846 @default.
- W2261123995 cites W1509349764 @default.
- W2261123995 cites W1510222797 @default.
- W2261123995 cites W1510368738 @default.
- W2261123995 cites W1514254856 @default.
- W2261123995 cites W1518363720 @default.
- W2261123995 cites W1519854356 @default.
- W2261123995 cites W1521942127 @default.
- W2261123995 cites W1523041988 @default.
- W2261123995 cites W1527925700 @default.
- W2261123995 cites W1534067655 @default.
- W2261123995 cites W1534335973 @default.
- W2261123995 cites W1534611846 @default.
- W2261123995 cites W1541313361 @default.
- W2261123995 cites W1544543122 @default.
- W2261123995 cites W1546081490 @default.
- W2261123995 cites W1547100201 @default.
- W2261123995 cites W1550110278 @default.
- W2261123995 cites W1562915062 @default.
- W2261123995 cites W1566412221 @default.
- W2261123995 cites W1567294618 @default.
- W2261123995 cites W1583869287 @default.
- W2261123995 cites W1586728410 @default.
- W2261123995 cites W1587449012 @default.
- W2261123995 cites W1590437595 @default.
- W2261123995 cites W1593799327 @default.
- W2261123995 cites W1596191114 @default.
- W2261123995 cites W1596365597 @default.
- W2261123995 cites W1605593319 @default.
- W2261123995 cites W1655111696 @default.
- W2261123995 cites W1663101133 @default.
- W2261123995 cites W1787074469 @default.
- W2261123995 cites W1828993462 @default.
- W2261123995 cites W1943502734 @default.
- W2261123995 cites W1965042993 @default.
- W2261123995 cites W1969005071 @default.
- W2261123995 cites W1974583144 @default.
- W2261123995 cites W1987073197 @default.
- W2261123995 cites W1987298286 @default.
- W2261123995 cites W1989445634 @default.
- W2261123995 cites W1995008247 @default.
- W2261123995 cites W1998296117 @default.
- W2261123995 cites W2001859357 @default.
- W2261123995 cites W2001907324 @default.
- W2261123995 cites W2002089154 @default.
- W2261123995 cites W2002582188 @default.
- W2261123995 cites W2009965218 @default.
- W2261123995 cites W2013887890 @default.
- W2261123995 cites W2017603160 @default.
- W2261123995 cites W2024613742 @default.
- W2261123995 cites W2038952689 @default.
- W2261123995 cites W2046239089 @default.
- W2261123995 cites W2054198444 @default.
- W2261123995 cites W2061079066 @default.
- W2261123995 cites W2080267935 @default.
- W2261123995 cites W2080593426 @default.
- W2261123995 cites W2088139180 @default.
- W2261123995 cites W2090551028 @default.
- W2261123995 cites W2095210125 @default.
- W2261123995 cites W2095617372 @default.
- W2261123995 cites W2095786572 @default.
- W2261123995 cites W2098039922 @default.
- W2261123995 cites W2098996654 @default.
- W2261123995 cites W2103318645 @default.
- W2261123995 cites W2103953153 @default.
- W2261123995 cites W2110648791 @default.
- W2261123995 cites W2112381327 @default.
- W2261123995 cites W2114575161 @default.
- W2261123995 cites W2115969864 @default.
- W2261123995 cites W2118100248 @default.
- W2261123995 cites W2118713304 @default.
- W2261123995 cites W2119467398 @default.
- W2261123995 cites W2120437191 @default.
- W2261123995 cites W2120521925 @default.
- W2261123995 cites W2125967324 @default.
- W2261123995 cites W2126158321 @default.
- W2261123995 cites W2127574686 @default.
- W2261123995 cites W2128071879 @default.
- W2261123995 cites W2129384397 @default.
- W2261123995 cites W2130025446 @default.
- W2261123995 cites W2136248572 @default.
- W2261123995 cites W2137467159 @default.
- W2261123995 cites W2139609292 @default.
- W2261123995 cites W2140606869 @default.