Matches in SemOpenAlex for { <https://semopenalex.org/work/W2261633674> ?p ?o ?g. }
- W2261633674 endingPage "e000017" @default.
- W2261633674 startingPage "e000017" @default.
- W2261633674 abstract "Malignant diseases during pregnancy are relatively rare, with an estimated incidence of 1 in 1000 pregnancies.1.Voulgaris E. Pentheroudakis G. Pavlidis N. Cancer and pregnancy: a comprehensive review.Surg Oncol. 2011; 20: e175-e185doi:10.1016/j.suronc.2011.06.002Crossref PubMed Scopus (75) Google Scholar Owing to an increasing delay of pregnancy to the third and fourth decades of life, cancer will occur increasingly more frequently during pregnancy. Diagnosis is reportedly often delayed during pregnancy, due to overlapping symptoms of pregnancy and malignant disease, leading to higher stages of disease at diagnosis.1.Voulgaris E. Pentheroudakis G. Pavlidis N. Cancer and pregnancy: a comprehensive review.Surg Oncol. 2011; 20: e175-e185doi:10.1016/j.suronc.2011.06.002Crossref PubMed Scopus (75) Google Scholar After a malignant tumour is diagnosed during pregnancy, the pregnant patients with cancer must be provided with diagnostic imaging for the evaluation of disease extent, and to allow the same high-quality therapy planning as that received by a non-pregnant patient. At the same time, it is of the utmost importance to limit harm to the fetus from diagnostics and therapeutics as much as possible. Diagnostic imaging for staging purposes relies, to a large extent, on ionising radiation used in CT and in nuclear imaging modalities, as well as on the intravenous application of contrast agents. These methods cannot be recommended outright during pregnancy, due to possible detrimental effects on the fetus. In the pregnant patient, the attending physician is challenged with the choice of diagnostic imaging modalities, while limiting danger to the fetus as much as possible, and still enabling disease management similar to that in a non-pregnant patient. Therefore, malignant disease in pregnant patients should be managed by a multidisciplinary tumour board that has the competence to evaluate different strategies for staging, including invasive and non-invasive methods. In this article, the challenging task of finding appropriate imaging modalities for the staging of different malignant tumours that occur during pregnancy will be discussed. Proliferating cells are more sensitive to radiation effects than cells that have completed cell division.2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar The human embryo or fetus is a rapidly proliferating organism and, therefore, especially sensitive to radiation effects. Potential adverse effects from prenatal radiation due to imaging may comprise spontaneous abortion, congenital malformations (teratogenesis) and carcinogenesis (table 1).2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar, 3.Brent R.L. Saving lives and changing family histories: appropriate counseling of pregnant women and men and women of reproductive age, concerning the risk of diagnostic radiation exposures during and before pregnancy.Am J Obstet Gynecol. 2009; 200: 4-24doi:10.1016/j.ajog.2008.06.032Abstract Full Text Full Text PDF PubMed Scopus (127) Google Scholar, 4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google ScholarTable 1Overview of potential adverse effects resulting from prenatal exposure to ionising radiationEffectMost sensitive period after conception (d)Threshold dose at which an effect was observed (mGy)Absolute incidence (%/mGy)CommentPrenatal death0–81000.1If the conceptus survives, it is thought to develop fully, without radiation damageGrowth retardation8–56200NAOrgan malformation14–561000.05Small head size14–105NA0.05–0.10Mental retardation in 25% of children with small head sizeSevere mental retardation56–1051000.01–0.04Reduction of IQ56–1051000.01–0.03Childhood cancer0–77−0.017Most commonly leukaemiaInheritable damage0.0003 in males0.0001 in femalesModified after references6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar10.Wagner L. Lester R. Saldana L. Exposure of the pregnant patient to diagnostic radiations: a guide to medical management. Medical Physics Publishing, 1997Google Scholar and81.Arbeitsausschuss zur Ermittlung der pränatalen Strahlenexposition Deutsche Gesellschaft für Medizinische Physik e.V. Pränatale Strahlenexposition aus medizinischer Indikation. Dosisermittlung, Folgerungen für Arzt und Schwangere. 2002.Google Scholar.NA, not applicable. Open table in a new tab Modified after references6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar10.Wagner L. Lester R. Saldana L. Exposure of the pregnant patient to diagnostic radiations: a guide to medical management. Medical Physics Publishing, 1997Google Scholar and81.Arbeitsausschuss zur Ermittlung der pränatalen Strahlenexposition Deutsche Gesellschaft für Medizinische Physik e.V. Pränatale Strahlenexposition aus medizinischer Indikation. Dosisermittlung, Folgerungen für Arzt und Schwangere. 2002.Google Scholar.NA, not applicable. To evaluate the risk the fetus undergoes due to imaging of the pregnant patient, the range of radiation dose that is applied during the most common imaging studies must be considered (table 2).Table 2Ranges of radiation dose applied during the most common imaging studiesImagingTypical fetal radiation dose (mGy)Chest radiograph<0.01Mammography (2 planes, bilateral)<0.01CT of the head<0.005–0.5CT of the chest0.01–0.66CT of the abdomen/pelvis8–2599mTc bone scintigram3.318F-FDG PET1.1–9.04Modified after references1.Voulgaris E. Pentheroudakis G. Pavlidis N. Cancer and pregnancy: a comprehensive review.Surg Oncol. 2011; 20: e175-e185doi:10.1016/j.suronc.2011.06.002Crossref PubMed Scopus (75) Google Scholar7.Gomes M. Matias A. Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.Pediatr Radiol. 2015; 45: 1916-1929doi:10.1007/s00247-015-3403-zCrossref PubMed Scopus (28) Google Scholar52.Takalkar A.M. Khandelwal A. Lokitz S. et al.18F-FDG PET in pregnancy and fetal radiation dose estimates.J Nucl Med. 2011; 52: 1035-1040doi:10.2967/jnumed.110.085381Crossref PubMed Scopus (68) Google Scholar and82.SWoussen, XLopez-Rendon, DVanbeckevoort, et al. Clinical indications and radiation doses to the conceptus associated with CT imaging in pregnancy: a retrospective study. Eur RadiolPublished Online First: 23 Jul 2015. doi: 10.1007/s00330-015-3924-8doi:10.1007/s00330-015-3924-8Google Scholar.18F-FDG PET, 18F fluorodeoxyglucose positron emission tomography. Open table in a new tab Modified after references1.Voulgaris E. Pentheroudakis G. Pavlidis N. Cancer and pregnancy: a comprehensive review.Surg Oncol. 2011; 20: e175-e185doi:10.1016/j.suronc.2011.06.002Crossref PubMed Scopus (75) Google Scholar7.Gomes M. Matias A. Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.Pediatr Radiol. 2015; 45: 1916-1929doi:10.1007/s00247-015-3403-zCrossref PubMed Scopus (28) Google Scholar52.Takalkar A.M. Khandelwal A. Lokitz S. et al.18F-FDG PET in pregnancy and fetal radiation dose estimates.J Nucl Med. 2011; 52: 1035-1040doi:10.2967/jnumed.110.085381Crossref PubMed Scopus (68) Google Scholar and82.SWoussen, XLopez-Rendon, DVanbeckevoort, et al. Clinical indications and radiation doses to the conceptus associated with CT imaging in pregnancy: a retrospective study. Eur RadiolPublished Online First: 23 Jul 2015. doi: 10.1007/s00330-015-3924-8doi:10.1007/s00330-015-3924-8Google Scholar.18F-FDG PET, 18F fluorodeoxyglucose positron emission tomography. Radiation exposure over 50–100 mGy during the first 2 weeks after conception and before implantation results in either spontaneous abortion or a completely unaffected embryo (‘all-or-none effect’).4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar, 5.Walter H. Review of radiologic physics. Lippincot Williams & Wilkins, 2010Google Scholar, 6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar The likelihood of inducing abortion at doses below 50 mGy is low and supposedly not distinguishable from zero.6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar7.Gomes M. Matias A. Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.Pediatr Radiol. 2015; 45: 1916-1929doi:10.1007/s00247-015-3403-zCrossref PubMed Scopus (28) Google Scholar It is noteworthy that the average risk of spontaneous abortion is approximately 15% without any additional ionising radiation due to imaging.7.Gomes M. Matias A. Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.Pediatr Radiol. 2015; 45: 1916-1929doi:10.1007/s00247-015-3403-zCrossref PubMed Scopus (28) Google Scholar Teratogenesis is a non-stochastic or deterministic effect of radiation, for which a threshold exists, estimated to be around 50–100 mGy. Above this threshold, cellular repair mechanisms fail, leading to loss of tissue function. The severity of this effect increases with dose.2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar8.Coakley F. Cody D. Mahesh M. The pregnant patient: alternatives to CT and dose-saving modifications to CT technique—image Wisely.2010http://www.imagewisely.org/imaging-modalities/computed-tomography/medical-physicists/articles/the-pregnant-patientGoogle Scholar During organogenesis (between 3 and 8 weeks of gestation) and during the early fetal period (until the 15th week of gestation), when rapid neuronal development and migration take place, the fetus is most susceptible to the teratogenic effects of radiation.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar7.Gomes M. Matias A. Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.Pediatr Radiol. 2015; 45: 1916-1929doi:10.1007/s00247-015-3403-zCrossref PubMed Scopus (28) Google Scholar Radiation exposure above 100 mGy during that time may lead to mental retardation, microcephaly and intrauterine growth restriction.2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar After 16 weeks of gestation, the threshold for teratogenic effects is around 500–700 mGy.7.Gomes M. Matias A. Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.Pediatr Radiol. 2015; 45: 1916-1929doi:10.1007/s00247-015-3403-zCrossref PubMed Scopus (28) Google Scholar Outside this time window, and especially after 26 weeks of gestation, teratogenic effects are extremely unlikely at dose levels reached in diagnostic radiology.9.ACR—SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation. Amended. 2014. http://www.acr.org/~/media/9e2ed55531fc4b4fa53ef3b6d3b25df8.pdfGoogle Scholar10.Wagner L. Lester R. Saldana L. Exposure of the pregnant patient to diagnostic radiations: a guide to medical management. Medical Physics Publishing, 1997Google Scholar The risk for radiation-induced mental retardation is highest from the 8th to the 15th week.2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar During this time, the average IQ reduction is approximately 2.5–3.1 IQ-points per 100 mGy above a threshold of 100 mGy.2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar11.United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2010 report.2010Google Scholar Intrauterine growth retardation after fetal irradiation above the same threshold does occur, but is usually transient, meaning that the fetus is able to recover with time.7.Gomes M. Matias A. Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol.Pediatr Radiol. 2015; 45: 1916-1929doi:10.1007/s00247-015-3403-zCrossref PubMed Scopus (28) Google Scholar Furthermore, the probability of a fetus not developing any malformation is 96%. This probability is still 95.9% after a fetal dose of 50 mGy, and 95.8% after 100 mGy.6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar12.Wagner L.K. Hayman L.A. Pregnancy and women radiologists.Radiology. 1982; 145: 559-562doi:10.1148/radiology.145.2.7134471Crossref PubMed Scopus (39) Google Scholar The fetal dose usually does not exceed 50 mGy in a single radiological imaging study. The American College of Obstetricians and Gynecologists has even stated that exposure to <50 mGy has not been associated with an increase in fetal anomalies or pregnancy loss at all.13.ACOG Committee on Obstetric Practice ACOG Committee Opinion. Number 299, September 2004 (replaces No. 158, September 1995). Guidelines for diagnostic imaging during pregnancy.Obstet Gynecol. 2004; 104: 647-651doi:10.1097/00006250-200409000-00053Crossref PubMed Google Scholar Therefore, carcinogenesis is often the radiation effect that should concern radiologists and treating physicians more than teratogenesis. Carcinogenesis is a stochastic effect of radiation that does not result in a loss of tissue function, but does result in DNA mutations. Carcinogenic effects can occur at any dose and do not require any dose threshold. The probability of the effect to occur increases linearly with dose.2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar After an abdominal CT with a maximum uterine dose of 50 mGy, the relative risk of childhood malignancies may approximately double.14.Tremblay E. Thérasse E. Thomassin-Naggara I. et al.Quality initiatives: guidelines for use of medical imaging during pregnancy and lactation.Radiographics. 2012; 32: 897-911doi:10.1148/rg.323115120Crossref PubMed Scopus (200) Google Scholar, 15.Wang P.I. Chong S.T. Kielar A.Z. et al.Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations.AJR Am J Roentgenol. 2012; 198: 785-792doi:10.2214/AJR.11.8223Crossref PubMed Scopus (62) Google Scholar, 16.Risk of Teratogenesis from Gadolinium|UCSF Radiology. http://www.radiology.ucsf.edu/patient-care/patient-safety/ct-mri-pregnancy/teratogenesis-gadoliniumGoogle Scholar More specifically, carcinogenic risk varies according to the trimester in which radiation exposure happens. It is assumed to be highest after radiation exposure during the first trimester of pregnancy, with the relative risk for childhood cancer from the same dose of ionising radiation estimated to be 3.19 in the first trimester, and around 1.3 in the second and third trimesters, when organogenesis has been completed.2.Nguyen C.P. Goodman L.H. Fetal risk in diagnostic radiology.Semin Ultrasound CT MR. 2012; 33: 4-10doi:10.1053/j.sult.2011.09.003Crossref PubMed Scopus (49) Google Scholar4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar17.Tao G. Yew D.T. Gu T. et al.Sex-related differences in the anteroposterior diameter of the foetal cisterna magna.Clin Radiol. 2008; 63: 1015-1018doi:10.1016/j.crad.2008.02.007Abstract Full Text Full Text PDF PubMed Scopus (8) Google Scholar But, it is important to remember that the baseline cumulative risk of childhood cancer without any kind of diagnostic imaging during pregnancy is very low, at 1–2.5 per 1000 until the age of 15 years.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar18.Stiller C.A. Parkin D.M. Geographic and ethnic variations in the incidence of childhood cancer.Br Med Bull. 1996; 52: 682-703doi:10.1093/oxfordjournals.bmb.a011577Crossref PubMed Scopus (219) Google Scholar Therefore, after intrauterine radiation exposure of 50 mGy, even 1.3–3.19 times this incidence rate could still be considered a low risk for childhood cancer. Because of the quite minor risk of teratogenesis or carcinogenesis after radiation doses of up to 100 mGy, termination of pregnancy would not be justified. Above 200–500 mGy, the decision to abort a fetus has to be made based on individual circumstances, such as the requirement for serial-cross sectional imaging studies, interventions or radiation therapy.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar Above 500 mGy, clinically significant fetal damage may result from diagnostic imaging, such as significant mental radiation after radiation exposure during the 7th–25th weeks of gestation. Therefore, termination of pregnancy may be recommended in this setting.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar19.Colletti P.M. PET-CT in the Pregnant Patient.2012Google Scholar When choosing an appropriate imaging modality to evaluate the local extent or distant spread of a malignant lesion during pregnancy, the following issues should be considered: (1) safety of the fetus; (2) probability of metastatic disease and (3) the ability to achieve a staging accuracy similar to that in a non-pregnant patient.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar Non-ionising imaging modalities, such as ultrasound (US) and MRI, are preferable when equivalent in accuracy to imaging that involves ionising radiation. When ionising radiation is used for imaging, the cumulative uterine dose should be kept as low as reasonably achievable (ALARA).4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar If the fetus is not directly within the region to be examined, fetal radiation exposure is generally negligible and pregnancy should not alter the decision to perform an indicated examination.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar Generally, projection radiography has only limited sensitivity in the detection of metastatic disease. The radiologist should be aware that, after a chest radiograph with either positive or negative findings concerning metastatic disease, further imaging of the chest may be warranted. If the probability is low that projection radiography would definitely answer a clinical question, MRI (preferably without contrast) or CT (if it does not directly involve the fetus) should be considered. The fetal dose in CT scans of the maternal head, neck and extremities results from scatter radiation, and is negligible. The dose increases tremendously when the fetus is in the field of view.8.Coakley F. Cody D. Mahesh M. The pregnant patient: alternatives to CT and dose-saving modifications to CT technique—image Wisely.2010http://www.imagewisely.org/imaging-modalities/computed-tomography/medical-physicists/articles/the-pregnant-patientGoogle Scholar Technicians and radiologists exposing the pregnant patient and the fetus to ionising radiation are especially obliged to adhere to the principles of keeping the radiation dose as low as reasonably achievable (ALARA). To achieve the lowest reasonably possible dose that still would allow accurate image quality, technicians and radiologists should adjust the following parameters: tube potential (kV) may be lowered based on the patient's body weight; the tube current-time product (mAs) may be decreased; the pitch may be increased above 1; the number of acquisitions may be limited to one; automated exposure control, automatic tube current modulation and iterative reconstruction, may be used.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar6.McCollough C.H. Schueler B.A. Atwell T.D. et al.Radiation exposure and pregnancy: when should we be concerned?.Radiographics. 2007; 27 (discussion 917–8): 909-917doi:10.1148/rg.274065149Crossref PubMed Scopus (16) Google Scholar20.McCollough C.H. CT dose: how to measure, how to reduce.Health Phys. 2008; 95: 508-517doi:10.1097/01.HP.0000326343.35884.03Crossref PubMed Scopus (73) Google Scholar21.Raman S.P. Johnson P.T. Deshmukh S. et al.CT dose reduction applications: available tools on the latest generation of CT scanners.J Am Coll Radiol. 2013; 10: 37-41doi:10.1016/j.jacr.2012.06.025Abstract Full Text Full Text PDF PubMed Scopus (111) Google Scholar Caution is warranted when decreasing radiation dose during CT. Situations should be avoided in which diagnostic accuracy is diminished due to low image quality and examinations involving ionising radiation might then have to be repeated. Abdominal shielding during any CT does not result in substantial dose reduction, because most of the fetal dose results from internal scatter radiation rather than from direct radiation. Alternatively, internal shielding using oral barium in suspensions beyond 30% does reduce the fetal radiation dose.22.Yousefzadeh D.K. Ward M.B. Reft C. Internal barium shielding to minimize fetal irradiation in spiral chest CT: a phantom simulation experiment.Radiology. 2006; 239: 751-758doi:10.1148/radiol.2393042198Crossref PubMed Scopus (27) Google Scholar A single layer of chorionic epithelium serves as an interface between the maternal and fetal circulation in the placenta. Iodine-based contrast agents are limited in their ability to cross the placenta, due to their relatively high molecular weights.23.Webb J.A. Thomsen H.S. Morcos S.K. et al.The use of iodinated and gadolinium contrast media during pregnancy and lactation.Eur Radiol. 2005; 15: 1234-1240doi:10.1007/s00330-004-2583-yCrossref PubMed Scopus (434) Google Scholar Nevertheless, measurable amounts of iodinated contrast agents were detected in the fetus after intravenous administration of typical clinical doses to the mother.24.ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media: Version 10.1. 2015.Google Scholar After the iodinated contrast agent transverses the placenta and enters the fetal blood stream, it is excreted by the fetal kidneys and reaches the amniotic fluid via fetal urine. The fetus swallows amniotic fluid continuously, which lets the contrast enter the fetal gut. Alternative routes from maternal blood into the amniotic fluid have also been suggested.23.Webb J.A. Thomsen H.S. Morcos S.K. et al.The use of iodinated and gadolinium contrast media during pregnancy and lactation.Eur Radiol. 2005; 15: 1234-1240doi:10.1007/s00330-004-2583-yCrossref PubMed Scopus (434) Google Scholar25.Morrison J.C. Boyd M. Friedman B.I. et al.The effects of Renografin-60 on the fetal thyroid.Obs Gynecol. 1973; 42: 99-103PubMed Google Scholar It is recommended that an iodinated contrast agent be used if the expected information could affect treatment during pregnancy and if it is unjustifiable to delay the examination until after pregnancy.4.Tirada N. Dreizin D. Khati N.J. et al.Imaging pregnant and lactating patients.Radiographics. 2015; 35: 1751-1765doi:10.1148/rg.2015150031Crossref PubMed Scopus (128) Google Scholar24.ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media: Version 10.1. 2015.Google Scholar26.Atwell T.D. Lteif A.N. Brown D.L. et al.Neonatal thyroid function after administration of IV iodinated contrast agent to 21 pregnant patients.AJR Am J Roentgenol. 2008; 191: 268-271doi:10.2214/AJR.07.3336Crossref PubMed Scopus (69) Google Scholar In vivo tests in animals did not reveal any mutagenic or teratogenic effects. But, to date, well-controlled studies of the teratogenic effects in pregnant women have not been performed.24.ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media: Version 10.1. 2015.Google Scholar Fetal thyroid gland function is essential for the development of the central nervous system. Postnatal hypothyroidism has rarely been reported after the injection of high doses of fat-soluble iodinated contrast agents. Conversely, an intravenously administered low-osmolarity, water-soluble iodinated contrast agent does not have short-term effects on thyroid function in the newborn, probably because the overall amount of excess iodide in the fetal circulation is small and transient.24.ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media: Version 10.1. 2015.Google Scholar However, long-term effects are still unknown. To date, no single case of neonatal hypothyroidism from maternal intravascular injection of water-soluble iodinated contrast agents has been documented.26.Atwell T.D. Lteif A.N. Brown D.L. et al.Neonatal thyroid function after administration of IV iodinated contrast agent to 21 pregnant patients.AJR Am J Roentgenol. 2008; 191: 268-271doi:10.2214/AJR.07.3336Crossref PubMed Scopus (69) Google Scholar27.Bourjeily G. Chalhoub M. Phornphutkul C. et al.Neonatal thyroid function: effect of a single exposure to iodinated contrast medium in utero.Radiology. 2010; 256: 744-750doi:10.1148/radiol.10100163Crossref PubMed Scopus (103) Google Scholar Newborns are now routinely evaluated for hypothyroidism during the first week of life. If this screening is performed, no extra attention is felt to be necessary for cases of intravenous administration of iodinated, water-soluble contrast agents at routine clinical doses during pregnancy.24.ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media: Version 10.1. 2015.Google Scholar28.Kochi M.H. Kaloudis E.V. Ahmed W. et al.Effect of in utero exposure of iodinated intravenous contrast on neonatal thyroid function.. J Comput Assist Tomogr. 2012; 36: 165-169doi:10.1097/RCT.0b013e31824cc048Crossref PubMed Scopus (21) Google Scholar29.Rajaram S. Exley C.E. Fairlie F. et al.Effect of antenatal iodinated contrast agent on neonatal thyroid function.Br J Radiol. 2012; 85: e238-e242doi:10.1259/bjr/29806327Crossref PubMed Scopus (30) Google Scholar In countries without routine screening for hypothyroidism, an extra test should be performed during the first week of life if an iodinated contrast agent was administered to the mother during pregnancy. A general rule for the imaging strategy in a pregnant patient is to intravenously administer the iodinated contrast agent for an examination that would also be performed with contrast agent if the patient was not pregnant. Otherwise, it might be necessary to repeat the examination because of imaging limitations due to th" @default.
- W2261633674 created "2016-06-24" @default.
- W2261633674 creator A5017835212 @default.
- W2261633674 creator A5030013949 @default.
- W2261633674 creator A5082840545 @default.
- W2261633674 creator A5082898801 @default.
- W2261633674 date "2016-01-01" @default.
- W2261633674 modified "2023-10-16" @default.
- W2261633674 title "Radiological staging in pregnant patients with cancer" @default.
- W2261633674 cites W1119562498 @default.
- W2261633674 cites W1221773808 @default.
- W2261633674 cites W1539435228 @default.
- W2261633674 cites W1597735806 @default.
- W2261633674 cites W1892985269 @default.
- W2261633674 cites W1928288565 @default.
- W2261633674 cites W1939329534 @default.
- W2261633674 cites W1981232587 @default.
- W2261633674 cites W1983758373 @default.
- W2261633674 cites W1988437596 @default.
- W2261633674 cites W1995523855 @default.
- W2261633674 cites W1999787527 @default.
- W2261633674 cites W2004988755 @default.
- W2261633674 cites W2006338788 @default.
- W2261633674 cites W2006578405 @default.
- W2261633674 cites W2008807065 @default.
- W2261633674 cites W2009475147 @default.
- W2261633674 cites W2012219662 @default.
- W2261633674 cites W2013894830 @default.
- W2261633674 cites W2015532731 @default.
- W2261633674 cites W2016528672 @default.
- W2261633674 cites W2031557262 @default.
- W2261633674 cites W2031582502 @default.
- W2261633674 cites W2031767371 @default.
- W2261633674 cites W2032013171 @default.
- W2261633674 cites W2034818838 @default.
- W2261633674 cites W2036528264 @default.
- W2261633674 cites W2045225906 @default.
- W2261633674 cites W2045315277 @default.
- W2261633674 cites W2048725406 @default.
- W2261633674 cites W2062716897 @default.
- W2261633674 cites W2066635832 @default.
- W2261633674 cites W2072066874 @default.
- W2261633674 cites W2076653172 @default.
- W2261633674 cites W2078242257 @default.
- W2261633674 cites W2092531899 @default.
- W2261633674 cites W2096713885 @default.
- W2261633674 cites W2097807835 @default.
- W2261633674 cites W2101788967 @default.
- W2261633674 cites W2106883692 @default.
- W2261633674 cites W2112140017 @default.
- W2261633674 cites W2116098344 @default.
- W2261633674 cites W2117402371 @default.
- W2261633674 cites W2119147717 @default.
- W2261633674 cites W2119919731 @default.
- W2261633674 cites W2120448425 @default.
- W2261633674 cites W2125623244 @default.
- W2261633674 cites W2127639669 @default.
- W2261633674 cites W2130132097 @default.
- W2261633674 cites W2131983466 @default.
- W2261633674 cites W2133404105 @default.
- W2261633674 cites W2133465725 @default.
- W2261633674 cites W2134061129 @default.
- W2261633674 cites W2135935797 @default.
- W2261633674 cites W2138885078 @default.
- W2261633674 cites W2143746776 @default.
- W2261633674 cites W2149225940 @default.
- W2261633674 cites W2154681974 @default.
- W2261633674 cites W2158845178 @default.
- W2261633674 cites W2163997668 @default.
- W2261633674 cites W2321508793 @default.
- W2261633674 cites W2328443986 @default.
- W2261633674 cites W2418468121 @default.
- W2261633674 cites W2917707036 @default.
- W2261633674 doi "https://doi.org/10.1136/esmoopen-2015-000017" @default.
- W2261633674 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5070210" @default.
- W2261633674 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27843585" @default.
- W2261633674 hasPublicationYear "2016" @default.
- W2261633674 type Work @default.
- W2261633674 sameAs 2261633674 @default.
- W2261633674 citedByCount "20" @default.
- W2261633674 countsByYear W22616336742017 @default.
- W2261633674 countsByYear W22616336742018 @default.
- W2261633674 countsByYear W22616336742019 @default.
- W2261633674 countsByYear W22616336742020 @default.
- W2261633674 countsByYear W22616336742021 @default.
- W2261633674 countsByYear W22616336742022 @default.
- W2261633674 countsByYear W22616336742023 @default.
- W2261633674 crossrefType "journal-article" @default.
- W2261633674 hasAuthorship W2261633674A5017835212 @default.
- W2261633674 hasAuthorship W2261633674A5030013949 @default.
- W2261633674 hasAuthorship W2261633674A5082840545 @default.
- W2261633674 hasAuthorship W2261633674A5082898801 @default.
- W2261633674 hasBestOaLocation W22616336741 @default.
- W2261633674 hasConcept C121608353 @default.
- W2261633674 hasConcept C126322002 @default.
- W2261633674 hasConcept C126838900 @default.
- W2261633674 hasConcept C190892606 @default.
- W2261633674 hasConcept C71924100 @default.