Matches in SemOpenAlex for { <https://semopenalex.org/work/W2261844499> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2261844499 abstract "Forecasting of electricity load for a month is crucial for power system planning and safe operation. Monthly demand is subject to various factors such as season and climate effects, thus making accurate load demand forecasts a challenging task. In this paper a data driven machine learning approach is applied on monthly load morphing. More particularly, kernel based Gaussian Process Regression (GPR) is adopted for forecasting the amount of load demand for each month in a year-ahead-horizon. The GPR model is equipped with a valid kernel function (four different kernels are tested) and is trained on a set of historical datasets that contain the recorded monthly demands of the prior four to the tested years. It is extensively benchmarked on a period of five years and its performance is measured using the Mean Average Percentage Error (MAPE). Furthermore, it is compared to the performance taken with simple linear regression model. Results demonstrate the superiority of the GPR forecasting over that of the linear regression, however, a dependence of GPR on selection of kernel is observed." @default.
- W2261844499 created "2016-06-24" @default.
- W2261844499 creator A5051620719 @default.
- W2261844499 creator A5074118906 @default.
- W2261844499 creator A5076719857 @default.
- W2261844499 date "2014-01-01" @default.
- W2261844499 modified "2023-10-13" @default.
- W2261844499 title "Monthly load forecasting using kernel based gaussian process regression" @default.
- W2261844499 cites W1451923071 @default.
- W2261844499 cites W1965544481 @default.
- W2261844499 cites W2016476642 @default.
- W2261844499 cites W2034135159 @default.
- W2261844499 cites W2056302887 @default.
- W2261844499 cites W2061152874 @default.
- W2261844499 cites W2075022539 @default.
- W2261844499 cites W2075132325 @default.
- W2261844499 cites W2079005441 @default.
- W2261844499 cites W2107057828 @default.
- W2261844499 cites W2127691422 @default.
- W2261844499 cites W2137831894 @default.
- W2261844499 cites W2169337658 @default.
- W2261844499 cites W2362370576 @default.
- W2261844499 cites W2538874853 @default.
- W2261844499 cites W14377099 @default.
- W2261844499 cites W2521192297 @default.
- W2261844499 doi "https://doi.org/10.1049/cp.2014.1693" @default.
- W2261844499 hasPublicationYear "2014" @default.
- W2261844499 type Work @default.
- W2261844499 sameAs 2261844499 @default.
- W2261844499 citedByCount "17" @default.
- W2261844499 countsByYear W22618444992017 @default.
- W2261844499 countsByYear W22618444992018 @default.
- W2261844499 countsByYear W22618444992019 @default.
- W2261844499 countsByYear W22618444992020 @default.
- W2261844499 countsByYear W22618444992021 @default.
- W2261844499 countsByYear W22618444992022 @default.
- W2261844499 countsByYear W22618444992023 @default.
- W2261844499 crossrefType "proceedings-article" @default.
- W2261844499 hasAuthorship W2261844499A5051620719 @default.
- W2261844499 hasAuthorship W2261844499A5074118906 @default.
- W2261844499 hasAuthorship W2261844499A5076719857 @default.
- W2261844499 hasConcept C105795698 @default.
- W2261844499 hasConcept C111919701 @default.
- W2261844499 hasConcept C114614502 @default.
- W2261844499 hasConcept C119857082 @default.
- W2261844499 hasConcept C121332964 @default.
- W2261844499 hasConcept C153180895 @default.
- W2261844499 hasConcept C154945302 @default.
- W2261844499 hasConcept C163716315 @default.
- W2261844499 hasConcept C200695384 @default.
- W2261844499 hasConcept C33923547 @default.
- W2261844499 hasConcept C41008148 @default.
- W2261844499 hasConcept C61326573 @default.
- W2261844499 hasConcept C62520636 @default.
- W2261844499 hasConcept C74193536 @default.
- W2261844499 hasConcept C81692654 @default.
- W2261844499 hasConcept C83546350 @default.
- W2261844499 hasConcept C98045186 @default.
- W2261844499 hasConceptScore W2261844499C105795698 @default.
- W2261844499 hasConceptScore W2261844499C111919701 @default.
- W2261844499 hasConceptScore W2261844499C114614502 @default.
- W2261844499 hasConceptScore W2261844499C119857082 @default.
- W2261844499 hasConceptScore W2261844499C121332964 @default.
- W2261844499 hasConceptScore W2261844499C153180895 @default.
- W2261844499 hasConceptScore W2261844499C154945302 @default.
- W2261844499 hasConceptScore W2261844499C163716315 @default.
- W2261844499 hasConceptScore W2261844499C200695384 @default.
- W2261844499 hasConceptScore W2261844499C33923547 @default.
- W2261844499 hasConceptScore W2261844499C41008148 @default.
- W2261844499 hasConceptScore W2261844499C61326573 @default.
- W2261844499 hasConceptScore W2261844499C62520636 @default.
- W2261844499 hasConceptScore W2261844499C74193536 @default.
- W2261844499 hasConceptScore W2261844499C81692654 @default.
- W2261844499 hasConceptScore W2261844499C83546350 @default.
- W2261844499 hasConceptScore W2261844499C98045186 @default.
- W2261844499 hasLocation W22618444991 @default.
- W2261844499 hasOpenAccess W2261844499 @default.
- W2261844499 hasPrimaryLocation W22618444991 @default.
- W2261844499 hasRelatedWork W2056958800 @default.
- W2261844499 hasRelatedWork W2213164457 @default.
- W2261844499 hasRelatedWork W2600092203 @default.
- W2261844499 hasRelatedWork W2803685231 @default.
- W2261844499 hasRelatedWork W2966696655 @default.
- W2261844499 hasRelatedWork W3134152097 @default.
- W2261844499 hasRelatedWork W4293503520 @default.
- W2261844499 hasRelatedWork W4300066510 @default.
- W2261844499 hasRelatedWork W4311388919 @default.
- W2261844499 hasRelatedWork W566010457 @default.
- W2261844499 isParatext "false" @default.
- W2261844499 isRetracted "false" @default.
- W2261844499 magId "2261844499" @default.
- W2261844499 workType "article" @default.