Matches in SemOpenAlex for { <https://semopenalex.org/work/W2262013048> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2262013048 abstract "Big data though it is a hype up-springing many technical challenges that confront both academic research communities and commercial IT deployment, the root source of Big Data are founded on data stream and the curse of dimensionality. It is generally known that data which are sourced from data stream accumulate continuously making traditional batch-based model induction algorithm infeasible for real-time data mining. Feature selection has been popularly used to lighten the processing load in inducing a data mining model. However when it comes to mining over high dimensional data the search space from which optimal feature subset is derived grows exponentially in size, leading to an intractable demand in computation. In order to tackle this problem which is mainly based on the high-dimensionality and streaming format of data feeds in Big Data, a novel lightweight feature selection is proposed. The feature selection is designed particularly for mining streaming data on the fly, by using accelerated particle swarm optimization(APSO) type of swarm search the achieves enhanced analytical accuracy within reasonable processing data. In this paper a collection of Big Data with exceptionally large degree of dimensionality are put under test of our new feature selection algorithm for performance evolution. Big data though it is a hype up-springing many technical challenges that confront both academic research communities and commercial IT deployment, the root source of Big Data are founded on data stream and the curse of dimensionality. It is generally known that data which are sourced from data stream accumulate continuously making traditional batch-based model induction algorithm infeasible for real-time data mining. Feature selection has been popularly used to lighten the processing load in inducing a data mining model. However when it comes to mining over high dimensional data the search space from which optimal feature subset is derived grows exponentially in size, leading to an intractable demand in computation. In order to tackle this problem which is mainly based on the high-dimensionality and streaming format of data feeds in Big Data, a novel lightweight feature selection is proposed. The feature selection is designed particularly for mining streaming data on the fly, by using accelerated particle swarm optimization(APSO) type of swarm search the achieves enhanced analytical accuracy within reasonable processing data. In this paper a collection of Big Data with exceptionally large degree of dimensionality are put under test of our new feature selection algorithm for performance evolution." @default.
- W2262013048 created "2016-06-24" @default.
- W2262013048 creator A5016718323 @default.
- W2262013048 creator A5047894562 @default.
- W2262013048 date "2016-02-15" @default.
- W2262013048 modified "2023-10-01" @default.
- W2262013048 title "PSO SWARM SEARCH FEATURE SELECTION FOR DATA STREAM MINING BIG DATA USING GENETIC ALGORITHM" @default.
- W2262013048 hasPublicationYear "2016" @default.
- W2262013048 type Work @default.
- W2262013048 sameAs 2262013048 @default.
- W2262013048 citedByCount "0" @default.
- W2262013048 crossrefType "journal-article" @default.
- W2262013048 hasAuthorship W2262013048A5016718323 @default.
- W2262013048 hasAuthorship W2262013048A5047894562 @default.
- W2262013048 hasConcept C105339364 @default.
- W2262013048 hasConcept C111030470 @default.
- W2262013048 hasConcept C111919701 @default.
- W2262013048 hasConcept C119857082 @default.
- W2262013048 hasConcept C124101348 @default.
- W2262013048 hasConcept C138885662 @default.
- W2262013048 hasConcept C148483581 @default.
- W2262013048 hasConcept C2776401178 @default.
- W2262013048 hasConcept C2778484313 @default.
- W2262013048 hasConcept C41008148 @default.
- W2262013048 hasConcept C41895202 @default.
- W2262013048 hasConcept C75684735 @default.
- W2262013048 hasConcept C76155785 @default.
- W2262013048 hasConcept C81917197 @default.
- W2262013048 hasConcept C85617194 @default.
- W2262013048 hasConcept C89198739 @default.
- W2262013048 hasConceptScore W2262013048C105339364 @default.
- W2262013048 hasConceptScore W2262013048C111030470 @default.
- W2262013048 hasConceptScore W2262013048C111919701 @default.
- W2262013048 hasConceptScore W2262013048C119857082 @default.
- W2262013048 hasConceptScore W2262013048C124101348 @default.
- W2262013048 hasConceptScore W2262013048C138885662 @default.
- W2262013048 hasConceptScore W2262013048C148483581 @default.
- W2262013048 hasConceptScore W2262013048C2776401178 @default.
- W2262013048 hasConceptScore W2262013048C2778484313 @default.
- W2262013048 hasConceptScore W2262013048C41008148 @default.
- W2262013048 hasConceptScore W2262013048C41895202 @default.
- W2262013048 hasConceptScore W2262013048C75684735 @default.
- W2262013048 hasConceptScore W2262013048C76155785 @default.
- W2262013048 hasConceptScore W2262013048C81917197 @default.
- W2262013048 hasConceptScore W2262013048C85617194 @default.
- W2262013048 hasConceptScore W2262013048C89198739 @default.
- W2262013048 hasIssue "2" @default.
- W2262013048 hasLocation W22620130481 @default.
- W2262013048 hasOpenAccess W2262013048 @default.
- W2262013048 hasPrimaryLocation W22620130481 @default.
- W2262013048 hasRelatedWork W194888264 @default.
- W2262013048 hasRelatedWork W2055872764 @default.
- W2262013048 hasRelatedWork W2072944275 @default.
- W2262013048 hasRelatedWork W2112965067 @default.
- W2262013048 hasRelatedWork W2159702205 @default.
- W2262013048 hasRelatedWork W2282752563 @default.
- W2262013048 hasRelatedWork W2578264933 @default.
- W2262013048 hasRelatedWork W2580983921 @default.
- W2262013048 hasRelatedWork W2588319059 @default.
- W2262013048 hasRelatedWork W2604040517 @default.
- W2262013048 hasRelatedWork W2739512903 @default.
- W2262013048 hasRelatedWork W2755594639 @default.
- W2262013048 hasRelatedWork W2766818631 @default.
- W2262013048 hasRelatedWork W2766984203 @default.
- W2262013048 hasRelatedWork W2783114103 @default.
- W2262013048 hasRelatedWork W2903192553 @default.
- W2262013048 hasRelatedWork W296435875 @default.
- W2262013048 hasRelatedWork W2965454825 @default.
- W2262013048 hasRelatedWork W3004196126 @default.
- W2262013048 hasRelatedWork W3004904046 @default.
- W2262013048 hasVolume "2" @default.
- W2262013048 isParatext "false" @default.
- W2262013048 isRetracted "false" @default.
- W2262013048 magId "2262013048" @default.
- W2262013048 workType "article" @default.