Matches in SemOpenAlex for { <https://semopenalex.org/work/W2262133047> ?p ?o ?g. }
- W2262133047 abstract "State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (textit{Ursus maritimus}) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results." @default.
- W2262133047 created "2016-06-24" @default.
- W2262133047 creator A5030616211 @default.
- W2262133047 creator A5038548311 @default.
- W2262133047 creator A5054134744 @default.
- W2262133047 creator A5056700781 @default.
- W2262133047 creator A5074807102 @default.
- W2262133047 creator A5078531816 @default.
- W2262133047 creator A5086961180 @default.
- W2262133047 date "2016-05-25" @default.
- W2262133047 modified "2023-10-13" @default.
- W2262133047 title "State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems" @default.
- W2262133047 cites W1489564433 @default.
- W2262133047 cites W1560519192 @default.
- W2262133047 cites W1561909087 @default.
- W2262133047 cites W1790462712 @default.
- W2262133047 cites W1841330490 @default.
- W2262133047 cites W1910153928 @default.
- W2262133047 cites W1959589527 @default.
- W2262133047 cites W1979279612 @default.
- W2262133047 cites W1990370669 @default.
- W2262133047 cites W1997847979 @default.
- W2262133047 cites W2007739497 @default.
- W2262133047 cites W2013385108 @default.
- W2262133047 cites W2018791357 @default.
- W2262133047 cites W2021179080 @default.
- W2262133047 cites W2027594569 @default.
- W2262133047 cites W2038462691 @default.
- W2262133047 cites W2042991198 @default.
- W2262133047 cites W2044763292 @default.
- W2262133047 cites W2048528631 @default.
- W2262133047 cites W2057314736 @default.
- W2262133047 cites W2066126204 @default.
- W2262133047 cites W2068133876 @default.
- W2262133047 cites W2069513456 @default.
- W2262133047 cites W2071216578 @default.
- W2262133047 cites W2072561094 @default.
- W2262133047 cites W2079891698 @default.
- W2262133047 cites W2080842868 @default.
- W2262133047 cites W2082208382 @default.
- W2262133047 cites W2083155027 @default.
- W2262133047 cites W2085047756 @default.
- W2262133047 cites W2093603746 @default.
- W2262133047 cites W2095954269 @default.
- W2262133047 cites W2097520676 @default.
- W2262133047 cites W2099538683 @default.
- W2262133047 cites W2105934661 @default.
- W2262133047 cites W2107858042 @default.
- W2262133047 cites W2114077318 @default.
- W2262133047 cites W2114084375 @default.
- W2262133047 cites W2126484630 @default.
- W2262133047 cites W2128487773 @default.
- W2262133047 cites W2129913526 @default.
- W2262133047 cites W2130523075 @default.
- W2262133047 cites W2131455567 @default.
- W2262133047 cites W2132860132 @default.
- W2262133047 cites W2138578732 @default.
- W2262133047 cites W2139114394 @default.
- W2262133047 cites W2157787485 @default.
- W2262133047 cites W2160308386 @default.
- W2262133047 cites W2171010898 @default.
- W2262133047 cites W2171969189 @default.
- W2262133047 cites W2325799032 @default.
- W2262133047 cites W2484370304 @default.
- W2262133047 cites W3098792567 @default.
- W2262133047 doi "https://doi.org/10.1038/srep26677" @default.
- W2262133047 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27220686" @default.
- W2262133047 hasPublicationYear "2016" @default.
- W2262133047 type Work @default.
- W2262133047 sameAs 2262133047 @default.
- W2262133047 citedByCount "103" @default.
- W2262133047 countsByYear W22621330472016 @default.
- W2262133047 countsByYear W22621330472017 @default.
- W2262133047 countsByYear W22621330472018 @default.
- W2262133047 countsByYear W22621330472019 @default.
- W2262133047 countsByYear W22621330472020 @default.
- W2262133047 countsByYear W22621330472021 @default.
- W2262133047 countsByYear W22621330472022 @default.
- W2262133047 countsByYear W22621330472023 @default.
- W2262133047 crossrefType "journal-article" @default.
- W2262133047 hasAuthorship W2262133047A5030616211 @default.
- W2262133047 hasAuthorship W2262133047A5038548311 @default.
- W2262133047 hasAuthorship W2262133047A5054134744 @default.
- W2262133047 hasAuthorship W2262133047A5056700781 @default.
- W2262133047 hasAuthorship W2262133047A5074807102 @default.
- W2262133047 hasAuthorship W2262133047A5078531816 @default.
- W2262133047 hasAuthorship W2262133047A5086961180 @default.
- W2262133047 hasBestOaLocation W22621330471 @default.
- W2262133047 hasConcept C105795698 @default.
- W2262133047 hasConcept C11413529 @default.
- W2262133047 hasConcept C119857082 @default.
- W2262133047 hasConcept C121332964 @default.
- W2262133047 hasConcept C121864883 @default.
- W2262133047 hasConcept C134261354 @default.
- W2262133047 hasConcept C144024400 @default.
- W2262133047 hasConcept C149782125 @default.
- W2262133047 hasConcept C149923435 @default.
- W2262133047 hasConcept C154945302 @default.
- W2262133047 hasConcept C158622935 @default.
- W2262133047 hasConcept C162324750 @default.