Matches in SemOpenAlex for { <https://semopenalex.org/work/W2263787030> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2263787030 abstract "Presented at Fall 2015 Meeting of the Western States Section of the Combustion Institute, Provo, UT, USA. 5–6 October 2015. Paper 134CK-0019.Accurate simulations of combustion phenomena require the use of detailed chemical kinetics in order to capture limit phenomena such as ignition and extinction as well as predict pollutant formation. However, the chemical kinetic models for hydrocarbon fuels of practical interest exhibit both mathematical stiffness in the governing differential equations and large numbers of species and reactions, particularly for larger molecules. In order to integrate the stiff equations governing chemical kinetics, generally reactive-flow simulations rely on implicit algorithms that require frequent Jacobian matrix evaluations; in addition, various computational combustion diagnostics methods require accurate Jacobian matrices. Typically, finite differences numerically approximate these, but for larger chemical kinetic models this poses significant computational demands since the number of chemical source term evaluations scales with the square of species count. Furthermore, existing analytical Jacobian tools do not optimize evaluations or support emerging SIMD processors such as GPUs. Here we introduce pyJac, a Python-based open-source program that generates analytical Jacobian matrices for use in chemical kinetics modeling and analysis. In addition to producing the necessary customized source code for evaluating reaction rates (including all modern reaction rate formulations), the chemical source terms, and the Jacobian matrix, pyJac uses an optimized evaluation order to minimize computational and memory operations. First, we establish the correctness of the Jacobian matrices for kinetic models of hydrogen, methane, and ethylene oxidation (number of species ranging 13–111) by showing agreement within 1% of high-order finite difference approximations. We then demonstrate the performance, via matrix evaluation timing comparisons, achievable on CPUs and GPUs using pyJac. The Jacobian matrix generator we describe here will be useful for reducing the cost of integrating chemical source terms with implicit algorithms in particular and algorithms that require an accurate Jacobian matrix in general. Furthermore, the open-source release of the program and Python-based implementation will enable wide adoption." @default.
- W2263787030 created "2016-06-24" @default.
- W2263787030 creator A5024113114 @default.
- W2263787030 creator A5083534268 @default.
- W2263787030 creator A5087128272 @default.
- W2263787030 date "2016-02-09" @default.
- W2263787030 modified "2023-09-23" @default.
- W2263787030 title "Initial investigation of pyJac: an analytical Jacobian generator for chemical kinetics" @default.
- W2263787030 doi "https://doi.org/10.6084/m9.figshare.2075515.v1" @default.
- W2263787030 hasPublicationYear "2016" @default.
- W2263787030 type Work @default.
- W2263787030 sameAs 2263787030 @default.
- W2263787030 citedByCount "0" @default.
- W2263787030 crossrefType "journal-article" @default.
- W2263787030 hasAuthorship W2263787030A5024113114 @default.
- W2263787030 hasAuthorship W2263787030A5083534268 @default.
- W2263787030 hasAuthorship W2263787030A5087128272 @default.
- W2263787030 hasConcept C11413529 @default.
- W2263787030 hasConcept C200331156 @default.
- W2263787030 hasConcept C28826006 @default.
- W2263787030 hasConcept C33923547 @default.
- W2263787030 hasConcept C41008148 @default.
- W2263787030 hasConcept C55439883 @default.
- W2263787030 hasConceptScore W2263787030C11413529 @default.
- W2263787030 hasConceptScore W2263787030C200331156 @default.
- W2263787030 hasConceptScore W2263787030C28826006 @default.
- W2263787030 hasConceptScore W2263787030C33923547 @default.
- W2263787030 hasConceptScore W2263787030C41008148 @default.
- W2263787030 hasConceptScore W2263787030C55439883 @default.
- W2263787030 hasLocation W22637870301 @default.
- W2263787030 hasOpenAccess W2263787030 @default.
- W2263787030 hasPrimaryLocation W22637870301 @default.
- W2263787030 hasRelatedWork W142290263 @default.
- W2263787030 hasRelatedWork W1598576131 @default.
- W2263787030 hasRelatedWork W1974311420 @default.
- W2263787030 hasRelatedWork W1996070283 @default.
- W2263787030 hasRelatedWork W2001558733 @default.
- W2263787030 hasRelatedWork W2046744518 @default.
- W2263787030 hasRelatedWork W2063489912 @default.
- W2263787030 hasRelatedWork W2091021790 @default.
- W2263787030 hasRelatedWork W2131014869 @default.
- W2263787030 hasRelatedWork W2145323449 @default.
- W2263787030 hasRelatedWork W2162352426 @default.
- W2263787030 hasRelatedWork W2320491815 @default.
- W2263787030 hasRelatedWork W2593112732 @default.
- W2263787030 hasRelatedWork W2760180955 @default.
- W2263787030 hasRelatedWork W2963114865 @default.
- W2263787030 hasRelatedWork W2992354820 @default.
- W2263787030 hasRelatedWork W3125741739 @default.
- W2263787030 hasRelatedWork W3204384749 @default.
- W2263787030 hasRelatedWork W798129507 @default.
- W2263787030 hasRelatedWork W3045817651 @default.
- W2263787030 isParatext "false" @default.
- W2263787030 isRetracted "false" @default.
- W2263787030 magId "2263787030" @default.
- W2263787030 workType "article" @default.