Matches in SemOpenAlex for { <https://semopenalex.org/work/W2263896607> ?p ?o ?g. }
- W2263896607 endingPage "152" @default.
- W2263896607 startingPage "145" @default.
- W2263896607 abstract "Increased adoption of electronic health records has resulted in increased availability of free text clinical data for secondary use. A variety of approaches to obtain actionable information from unstructured free text data exist. These approaches are resource intensive, inherently complex and rely on structured clinical data and dictionary-based approaches. We sought to evaluate the potential to obtain actionable information from free text pathology reports using routinely available tools and approaches that do not depend on dictionary-based approaches.We obtained pathology reports from a large health information exchange and evaluated the capacity to detect cancer cases from these reports using 3 non-dictionary feature selection approaches, 4 feature subset sizes, and 5 clinical decision models: simple logistic regression, naïve bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve.Decision models parameterized using automated, informed, and manual feature selection approaches yielded similar results. Furthermore, non-dictionary classification approaches identified cancer cases present in free text reports with evaluation measures approaching and exceeding 80-90% for most metrics.Our methods are feasible and practical approaches for extracting substantial information value from free text medical data, and the results suggest that these methods can perform on par, if not better, than existing dictionary-based approaches. Given that public health agencies are often under-resourced and lack the technical capacity for more complex methodologies, these results represent potentially significant value to the public health field." @default.
- W2263896607 created "2016-06-24" @default.
- W2263896607 creator A5016734595 @default.
- W2263896607 creator A5040496579 @default.
- W2263896607 creator A5050333023 @default.
- W2263896607 creator A5069811405 @default.
- W2263896607 creator A5076075666 @default.
- W2263896607 creator A5087286057 @default.
- W2263896607 creator A5090384405 @default.
- W2263896607 date "2016-04-01" @default.
- W2263896607 modified "2023-10-13" @default.
- W2263896607 title "Toward better public health reporting using existing off the shelf approaches: A comparison of alternative cancer detection approaches using plaintext medical data and non-dictionary based feature selection" @default.
- W2263896607 cites W1966526111 @default.
- W2263896607 cites W1973031260 @default.
- W2263896607 cites W1977419376 @default.
- W2263896607 cites W1981103603 @default.
- W2263896607 cites W1981976602 @default.
- W2263896607 cites W1986873494 @default.
- W2263896607 cites W2012560661 @default.
- W2263896607 cites W2028862889 @default.
- W2263896607 cites W2039612385 @default.
- W2263896607 cites W2045240677 @default.
- W2263896607 cites W2054831782 @default.
- W2263896607 cites W2058370198 @default.
- W2263896607 cites W2062611449 @default.
- W2263896607 cites W2071912148 @default.
- W2263896607 cites W2084898517 @default.
- W2263896607 cites W2107435951 @default.
- W2263896607 cites W2131756199 @default.
- W2263896607 cites W2133990480 @default.
- W2263896607 cites W2139865360 @default.
- W2263896607 cites W2141616721 @default.
- W2263896607 cites W2168295139 @default.
- W2263896607 cites W2328176404 @default.
- W2263896607 cites W4236730517 @default.
- W2263896607 doi "https://doi.org/10.1016/j.jbi.2016.01.008" @default.
- W2263896607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26826453" @default.
- W2263896607 hasPublicationYear "2016" @default.
- W2263896607 type Work @default.
- W2263896607 sameAs 2263896607 @default.
- W2263896607 citedByCount "24" @default.
- W2263896607 countsByYear W22638966072016 @default.
- W2263896607 countsByYear W22638966072017 @default.
- W2263896607 countsByYear W22638966072018 @default.
- W2263896607 countsByYear W22638966072019 @default.
- W2263896607 countsByYear W22638966072020 @default.
- W2263896607 countsByYear W22638966072021 @default.
- W2263896607 countsByYear W22638966072022 @default.
- W2263896607 countsByYear W22638966072023 @default.
- W2263896607 crossrefType "journal-article" @default.
- W2263896607 hasAuthorship W2263896607A5016734595 @default.
- W2263896607 hasAuthorship W2263896607A5040496579 @default.
- W2263896607 hasAuthorship W2263896607A5050333023 @default.
- W2263896607 hasAuthorship W2263896607A5069811405 @default.
- W2263896607 hasAuthorship W2263896607A5076075666 @default.
- W2263896607 hasAuthorship W2263896607A5087286057 @default.
- W2263896607 hasAuthorship W2263896607A5090384405 @default.
- W2263896607 hasBestOaLocation W22638966071 @default.
- W2263896607 hasConcept C119857082 @default.
- W2263896607 hasConcept C12267149 @default.
- W2263896607 hasConcept C124101348 @default.
- W2263896607 hasConcept C138885662 @default.
- W2263896607 hasConcept C148483581 @default.
- W2263896607 hasConcept C154945302 @default.
- W2263896607 hasConcept C169258074 @default.
- W2263896607 hasConcept C2776401178 @default.
- W2263896607 hasConcept C41008148 @default.
- W2263896607 hasConcept C41895202 @default.
- W2263896607 hasConcept C52001869 @default.
- W2263896607 hasConcept C58471807 @default.
- W2263896607 hasConcept C81917197 @default.
- W2263896607 hasConcept C84525736 @default.
- W2263896607 hasConceptScore W2263896607C119857082 @default.
- W2263896607 hasConceptScore W2263896607C12267149 @default.
- W2263896607 hasConceptScore W2263896607C124101348 @default.
- W2263896607 hasConceptScore W2263896607C138885662 @default.
- W2263896607 hasConceptScore W2263896607C148483581 @default.
- W2263896607 hasConceptScore W2263896607C154945302 @default.
- W2263896607 hasConceptScore W2263896607C169258074 @default.
- W2263896607 hasConceptScore W2263896607C2776401178 @default.
- W2263896607 hasConceptScore W2263896607C41008148 @default.
- W2263896607 hasConceptScore W2263896607C41895202 @default.
- W2263896607 hasConceptScore W2263896607C52001869 @default.
- W2263896607 hasConceptScore W2263896607C58471807 @default.
- W2263896607 hasConceptScore W2263896607C81917197 @default.
- W2263896607 hasConceptScore W2263896607C84525736 @default.
- W2263896607 hasLocation W22638966071 @default.
- W2263896607 hasLocation W22638966072 @default.
- W2263896607 hasOpenAccess W2263896607 @default.
- W2263896607 hasPrimaryLocation W22638966071 @default.
- W2263896607 hasRelatedWork W2780266336 @default.
- W2263896607 hasRelatedWork W2970562883 @default.
- W2263896607 hasRelatedWork W3036529732 @default.
- W2263896607 hasRelatedWork W3154045278 @default.
- W2263896607 hasRelatedWork W3210764983 @default.
- W2263896607 hasRelatedWork W4285162676 @default.
- W2263896607 hasRelatedWork W4367335949 @default.
- W2263896607 hasRelatedWork W4367336074 @default.