Matches in SemOpenAlex for { <https://semopenalex.org/work/W2264004717> ?p ?o ?g. }
- W2264004717 endingPage "5246" @default.
- W2264004717 startingPage "5234" @default.
- W2264004717 abstract "Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin. Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin." @default.
- W2264004717 created "2016-06-24" @default.
- W2264004717 creator A5010008672 @default.
- W2264004717 creator A5017371445 @default.
- W2264004717 creator A5020842663 @default.
- W2264004717 creator A5027915011 @default.
- W2264004717 creator A5031761034 @default.
- W2264004717 creator A5039474734 @default.
- W2264004717 creator A5046106815 @default.
- W2264004717 creator A5047783020 @default.
- W2264004717 creator A5055332125 @default.
- W2264004717 creator A5061653192 @default.
- W2264004717 creator A5070293533 @default.
- W2264004717 creator A5072438564 @default.
- W2264004717 creator A5073802212 @default.
- W2264004717 creator A5077111494 @default.
- W2264004717 creator A5087955293 @default.
- W2264004717 date "2016-03-01" @default.
- W2264004717 modified "2023-10-17" @default.
- W2264004717 title "Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin" @default.
- W2264004717 cites W1539796472 @default.
- W2264004717 cites W1572376186 @default.
- W2264004717 cites W1801547473 @default.
- W2264004717 cites W1957677095 @default.
- W2264004717 cites W1969156185 @default.
- W2264004717 cites W1974353356 @default.
- W2264004717 cites W1977038370 @default.
- W2264004717 cites W1977138583 @default.
- W2264004717 cites W1980195046 @default.
- W2264004717 cites W1982126789 @default.
- W2264004717 cites W1982267818 @default.
- W2264004717 cites W1984865044 @default.
- W2264004717 cites W1986823345 @default.
- W2264004717 cites W1990981589 @default.
- W2264004717 cites W1992528871 @default.
- W2264004717 cites W1996234228 @default.
- W2264004717 cites W1996918579 @default.
- W2264004717 cites W2006508993 @default.
- W2264004717 cites W2007972307 @default.
- W2264004717 cites W2015260661 @default.
- W2264004717 cites W2031518664 @default.
- W2264004717 cites W2035503835 @default.
- W2264004717 cites W2035694509 @default.
- W2264004717 cites W2037312364 @default.
- W2264004717 cites W2040980676 @default.
- W2264004717 cites W2049476357 @default.
- W2264004717 cites W2050091361 @default.
- W2264004717 cites W2051731525 @default.
- W2264004717 cites W2060807817 @default.
- W2264004717 cites W2066088601 @default.
- W2264004717 cites W2068796470 @default.
- W2264004717 cites W2069271654 @default.
- W2264004717 cites W2074461690 @default.
- W2264004717 cites W2078057889 @default.
- W2264004717 cites W2079359179 @default.
- W2264004717 cites W2084228126 @default.
- W2264004717 cites W2085126973 @default.
- W2264004717 cites W2097715383 @default.
- W2264004717 cites W2101078720 @default.
- W2264004717 cites W2101626255 @default.
- W2264004717 cites W2102110064 @default.
- W2264004717 cites W2102889794 @default.
- W2264004717 cites W2103714813 @default.
- W2264004717 cites W2110518308 @default.
- W2264004717 cites W2114666241 @default.
- W2264004717 cites W2118487554 @default.
- W2264004717 cites W2118968407 @default.
- W2264004717 cites W2119273703 @default.
- W2264004717 cites W2121541027 @default.
- W2264004717 cites W2122339645 @default.
- W2264004717 cites W2124983865 @default.
- W2264004717 cites W2127130852 @default.
- W2264004717 cites W2132629607 @default.
- W2264004717 cites W2137587451 @default.
- W2264004717 cites W2139954389 @default.
- W2264004717 cites W2140133474 @default.
- W2264004717 cites W2144081223 @default.
- W2264004717 cites W2149885731 @default.
- W2264004717 cites W2149953029 @default.
- W2264004717 cites W2150646586 @default.
- W2264004717 cites W2154011403 @default.
- W2264004717 cites W2156663168 @default.
- W2264004717 cites W2163341755 @default.
- W2264004717 cites W2169678694 @default.
- W2264004717 cites W2180229411 @default.
- W2264004717 cites W4231680606 @default.
- W2264004717 cites W4238581030 @default.
- W2264004717 doi "https://doi.org/10.1074/jbc.m115.694307" @default.
- W2264004717 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4777856" @default.
- W2264004717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26637355" @default.
- W2264004717 hasPublicationYear "2016" @default.
- W2264004717 type Work @default.
- W2264004717 sameAs 2264004717 @default.
- W2264004717 citedByCount "34" @default.
- W2264004717 countsByYear W22640047172016 @default.
- W2264004717 countsByYear W22640047172017 @default.
- W2264004717 countsByYear W22640047172018 @default.
- W2264004717 countsByYear W22640047172019 @default.