Matches in SemOpenAlex for { <https://semopenalex.org/work/W2264752488> ?p ?o ?g. }
- W2264752488 abstract "Until recently, propositions on the subject of intelligent service companions, like robots, were mostly user and environment independent. Our work is part of the FUI-RoboPopuli project, which concentrates on endowing entertainment companion robots with adaptive and social behavior. More precisely, we focus on the capacity of an intelligent system to learn how to personalize and adapt its behavior/actions according to its interaction situation that describes (a) the current user attributes, and (b) the current environment attributes. Our approach is based on models of the type of Markov decision processes (MDPs) that are largely used for adaptive robot applications. In order to have, as quickly as possible, a relevant adaptive behavior whatever the interaction situation, several approaches were proposed to decrease the sample complexity required to learn the MDP model, including its reward function. We argue that systems that are based on detecting important attributes for each decision are more likely to converge faster than others. To this end, we present two algorithms to learn the MDP reward function through analyzing interaction traces (i.e., the interaction history between the robot and its users including their feedback regarding the robot actions). The first algorithm is direct, certain and does not particularly exploit its knowledge to adapt to unknown situations (i.e., unknown users’ and/or environment settings). The second is able to detect the importance of certain situation attributes in the adaptation process. The detection of important attributes is used to speed up the learning process and helps by generalizing the learned reward function to unknown situations. In this paper, we present both learning algorithms, simulated experiments and an experiment with the EMOX (EMOtion eXchange) robot that was upgraded during the FUI-RoboPopuli project. The results of those experiments prove that when dealing with adaptive decision making, the detection of important attributes for each decision speeds up the learning process and help in achieving convergence using fewer samples. We also present a scaling analysis through the simulated experiments." @default.
- W2264752488 created "2016-06-24" @default.
- W2264752488 creator A5037693487 @default.
- W2264752488 creator A5063254496 @default.
- W2264752488 creator A5081609113 @default.
- W2264752488 date "2016-03-22" @default.
- W2264752488 modified "2023-10-18" @default.
- W2264752488 title "Adaptive artificial companions learning from users’ feedback" @default.
- W2264752488 cites W105711246 @default.
- W2264752488 cites W1583953806 @default.
- W2264752488 cites W1967769980 @default.
- W2264752488 cites W1971191882 @default.
- W2264752488 cites W1980406336 @default.
- W2264752488 cites W1983420732 @default.
- W2264752488 cites W1986652235 @default.
- W2264752488 cites W1989490577 @default.
- W2264752488 cites W1994305689 @default.
- W2264752488 cites W2000476293 @default.
- W2264752488 cites W2001564357 @default.
- W2264752488 cites W2022460182 @default.
- W2264752488 cites W2027106130 @default.
- W2264752488 cites W2047189892 @default.
- W2264752488 cites W2064012529 @default.
- W2264752488 cites W2073995413 @default.
- W2264752488 cites W2076337359 @default.
- W2264752488 cites W2110222641 @default.
- W2264752488 cites W2151074445 @default.
- W2264752488 cites W2156869222 @default.
- W2264752488 cites W2159777040 @default.
- W2264752488 cites W2162104245 @default.
- W2264752488 cites W2168359464 @default.
- W2264752488 doi "https://doi.org/10.1177/1059712316634062" @default.
- W2264752488 hasPublicationYear "2016" @default.
- W2264752488 type Work @default.
- W2264752488 sameAs 2264752488 @default.
- W2264752488 citedByCount "19" @default.
- W2264752488 countsByYear W22647524882016 @default.
- W2264752488 countsByYear W22647524882017 @default.
- W2264752488 countsByYear W22647524882018 @default.
- W2264752488 countsByYear W22647524882019 @default.
- W2264752488 countsByYear W22647524882020 @default.
- W2264752488 countsByYear W22647524882021 @default.
- W2264752488 countsByYear W22647524882022 @default.
- W2264752488 crossrefType "journal-article" @default.
- W2264752488 hasAuthorship W2264752488A5037693487 @default.
- W2264752488 hasAuthorship W2264752488A5063254496 @default.
- W2264752488 hasAuthorship W2264752488A5081609113 @default.
- W2264752488 hasConcept C105795698 @default.
- W2264752488 hasConcept C106189395 @default.
- W2264752488 hasConcept C107457646 @default.
- W2264752488 hasConcept C111919701 @default.
- W2264752488 hasConcept C118552586 @default.
- W2264752488 hasConcept C119857082 @default.
- W2264752488 hasConcept C120665830 @default.
- W2264752488 hasConcept C121332964 @default.
- W2264752488 hasConcept C139807058 @default.
- W2264752488 hasConcept C14036430 @default.
- W2264752488 hasConcept C154945302 @default.
- W2264752488 hasConcept C15744967 @default.
- W2264752488 hasConcept C159886148 @default.
- W2264752488 hasConcept C165696696 @default.
- W2264752488 hasConcept C192209626 @default.
- W2264752488 hasConcept C33923547 @default.
- W2264752488 hasConcept C38652104 @default.
- W2264752488 hasConcept C41008148 @default.
- W2264752488 hasConcept C52970973 @default.
- W2264752488 hasConcept C68784500 @default.
- W2264752488 hasConcept C78458016 @default.
- W2264752488 hasConcept C86803240 @default.
- W2264752488 hasConcept C90509273 @default.
- W2264752488 hasConcept C98045186 @default.
- W2264752488 hasConceptScore W2264752488C105795698 @default.
- W2264752488 hasConceptScore W2264752488C106189395 @default.
- W2264752488 hasConceptScore W2264752488C107457646 @default.
- W2264752488 hasConceptScore W2264752488C111919701 @default.
- W2264752488 hasConceptScore W2264752488C118552586 @default.
- W2264752488 hasConceptScore W2264752488C119857082 @default.
- W2264752488 hasConceptScore W2264752488C120665830 @default.
- W2264752488 hasConceptScore W2264752488C121332964 @default.
- W2264752488 hasConceptScore W2264752488C139807058 @default.
- W2264752488 hasConceptScore W2264752488C14036430 @default.
- W2264752488 hasConceptScore W2264752488C154945302 @default.
- W2264752488 hasConceptScore W2264752488C15744967 @default.
- W2264752488 hasConceptScore W2264752488C159886148 @default.
- W2264752488 hasConceptScore W2264752488C165696696 @default.
- W2264752488 hasConceptScore W2264752488C192209626 @default.
- W2264752488 hasConceptScore W2264752488C33923547 @default.
- W2264752488 hasConceptScore W2264752488C38652104 @default.
- W2264752488 hasConceptScore W2264752488C41008148 @default.
- W2264752488 hasConceptScore W2264752488C52970973 @default.
- W2264752488 hasConceptScore W2264752488C68784500 @default.
- W2264752488 hasConceptScore W2264752488C78458016 @default.
- W2264752488 hasConceptScore W2264752488C86803240 @default.
- W2264752488 hasConceptScore W2264752488C90509273 @default.
- W2264752488 hasConceptScore W2264752488C98045186 @default.
- W2264752488 hasLocation W22647524881 @default.
- W2264752488 hasLocation W22647524882 @default.
- W2264752488 hasOpenAccess W2264752488 @default.
- W2264752488 hasPrimaryLocation W22647524881 @default.
- W2264752488 hasRelatedWork W1571518467 @default.