Matches in SemOpenAlex for { <https://semopenalex.org/work/W2265115536> ?p ?o ?g. }
- W2265115536 abstract "Classical metric and non-metric multidimensional scaling MDS variants represent the well-known manifold learning ML methods which enable construction of low-dimensional representation projections of high-dimensional data inputs. However, their use is limited to the cases when data are inherently reducible to low dimensionality. In general, drawbacks and limitations of these, as well as pure, MDS variants become more apparent when the exploration learning is exposed to the structured data of high intrinsic dimension. As we demonstrate on artificial as well as real-world datasets, the over-determination problem can be solved by means of the hybrid and multi-component discrete-continuous multi-modal optimisation heuristics. A remarkable feature of the approach is that projections onto 2D are constructed simultaneously with the data categorisation compensating in part for the loss of original input information. We observed that the optimisation module integrated with ML modelling, metric learning and categorisation leads to a nontrivial mechanism resulting in heuristic charting of data." @default.
- W2265115536 created "2016-06-24" @default.
- W2265115536 creator A5021992046 @default.
- W2265115536 creator A5023637444 @default.
- W2265115536 creator A5086175641 @default.
- W2265115536 date "2016-01-02" @default.
- W2265115536 modified "2023-09-24" @default.
- W2265115536 title "Self-organised manifold learning and heuristic charting via adaptive metrics" @default.
- W2265115536 cites W1508205653 @default.
- W2265115536 cites W1518078339 @default.
- W2265115536 cites W1973192023 @default.
- W2265115536 cites W1982107291 @default.
- W2265115536 cites W1991549334 @default.
- W2265115536 cites W1998019040 @default.
- W2265115536 cites W2001141328 @default.
- W2265115536 cites W2004237875 @default.
- W2265115536 cites W2004683109 @default.
- W2265115536 cites W2009838184 @default.
- W2265115536 cites W2013489279 @default.
- W2265115536 cites W2015837697 @default.
- W2265115536 cites W2022453756 @default.
- W2265115536 cites W2028205093 @default.
- W2265115536 cites W2039972734 @default.
- W2265115536 cites W2041246351 @default.
- W2265115536 cites W2041565170 @default.
- W2265115536 cites W2041783407 @default.
- W2265115536 cites W2047583926 @default.
- W2265115536 cites W2048308095 @default.
- W2265115536 cites W2053186076 @default.
- W2265115536 cites W2059497048 @default.
- W2265115536 cites W2061597025 @default.
- W2265115536 cites W2062327317 @default.
- W2265115536 cites W2072501113 @default.
- W2265115536 cites W2082555634 @default.
- W2265115536 cites W2094150678 @default.
- W2265115536 cites W2103595817 @default.
- W2265115536 cites W2117684310 @default.
- W2265115536 cites W2134312057 @default.
- W2265115536 cites W2142366297 @default.
- W2265115536 cites W2151706924 @default.
- W2265115536 cites W2152825437 @default.
- W2265115536 cites W2153959652 @default.
- W2265115536 cites W2164491820 @default.
- W2265115536 cites W2165820996 @default.
- W2265115536 cites W2418776376 @default.
- W2265115536 cites W3101401805 @default.
- W2265115536 cites W434012021 @default.
- W2265115536 doi "https://doi.org/10.1080/09540091.2015.1116058" @default.
- W2265115536 hasPublicationYear "2016" @default.
- W2265115536 type Work @default.
- W2265115536 sameAs 2265115536 @default.
- W2265115536 citedByCount "1" @default.
- W2265115536 countsByYear W22651155362021 @default.
- W2265115536 crossrefType "journal-article" @default.
- W2265115536 hasAuthorship W2265115536A5021992046 @default.
- W2265115536 hasAuthorship W2265115536A5023637444 @default.
- W2265115536 hasAuthorship W2265115536A5086175641 @default.
- W2265115536 hasConcept C111030470 @default.
- W2265115536 hasConcept C111919701 @default.
- W2265115536 hasConcept C119857082 @default.
- W2265115536 hasConcept C127413603 @default.
- W2265115536 hasConcept C127705205 @default.
- W2265115536 hasConcept C151876577 @default.
- W2265115536 hasConcept C153180895 @default.
- W2265115536 hasConcept C154945302 @default.
- W2265115536 hasConcept C162324750 @default.
- W2265115536 hasConcept C173801870 @default.
- W2265115536 hasConcept C176217482 @default.
- W2265115536 hasConcept C17744445 @default.
- W2265115536 hasConcept C199539241 @default.
- W2265115536 hasConcept C202444582 @default.
- W2265115536 hasConcept C21547014 @default.
- W2265115536 hasConcept C2776359362 @default.
- W2265115536 hasConcept C30732413 @default.
- W2265115536 hasConcept C33676613 @default.
- W2265115536 hasConcept C33923547 @default.
- W2265115536 hasConcept C41008148 @default.
- W2265115536 hasConcept C529865628 @default.
- W2265115536 hasConcept C70518039 @default.
- W2265115536 hasConcept C78519656 @default.
- W2265115536 hasConcept C91682802 @default.
- W2265115536 hasConcept C94625758 @default.
- W2265115536 hasConceptScore W2265115536C111030470 @default.
- W2265115536 hasConceptScore W2265115536C111919701 @default.
- W2265115536 hasConceptScore W2265115536C119857082 @default.
- W2265115536 hasConceptScore W2265115536C127413603 @default.
- W2265115536 hasConceptScore W2265115536C127705205 @default.
- W2265115536 hasConceptScore W2265115536C151876577 @default.
- W2265115536 hasConceptScore W2265115536C153180895 @default.
- W2265115536 hasConceptScore W2265115536C154945302 @default.
- W2265115536 hasConceptScore W2265115536C162324750 @default.
- W2265115536 hasConceptScore W2265115536C173801870 @default.
- W2265115536 hasConceptScore W2265115536C176217482 @default.
- W2265115536 hasConceptScore W2265115536C17744445 @default.
- W2265115536 hasConceptScore W2265115536C199539241 @default.
- W2265115536 hasConceptScore W2265115536C202444582 @default.
- W2265115536 hasConceptScore W2265115536C21547014 @default.
- W2265115536 hasConceptScore W2265115536C2776359362 @default.
- W2265115536 hasConceptScore W2265115536C30732413 @default.
- W2265115536 hasConceptScore W2265115536C33676613 @default.