Matches in SemOpenAlex for { <https://semopenalex.org/work/W2265192181> ?p ?o ?g. }
- W2265192181 endingPage "1550021" @default.
- W2265192181 startingPage "1550021" @default.
- W2265192181 abstract "In this paper, we present an approach for sample selection using an ensemble of neural networks for credit scoring. The ensemble determines samples that can be considered outliers by checking the classification accuracy of the neural networks on the original training data samples. Those samples that are consistently misclassified by the neural networks in the ensemble are removed from the training dataset. The remaining data samples are then used to train and prune another neural network for rule extraction. Our experimental results on publicly available benchmark credit scoring datasets show that by eliminating the outliers, we obtain neural networks with higher predictive accuracy and simpler in structure compared to the networks that are trained with the original dataset. A rule extraction algorithm is applied to generate comprehensible rules from the neural networks. The extracted rules are more concise than the rules generated from networks that have been trained using the original datasets." @default.
- W2265192181 created "2016-06-24" @default.
- W2265192181 creator A5041714982 @default.
- W2265192181 creator A5065131156 @default.
- W2265192181 creator A5067016419 @default.
- W2265192181 date "2015-12-01" @default.
- W2265192181 modified "2023-10-16" @default.
- W2265192181 title "Using Sample Selection to Improve Accuracy and Simplicity of Rules Extracted from Neural Networks for Credit Scoring Applications" @default.
- W2265192181 cites W1971547695 @default.
- W2265192181 cites W1982120517 @default.
- W2265192181 cites W1986478348 @default.
- W2265192181 cites W1990113270 @default.
- W2265192181 cites W1990756741 @default.
- W2265192181 cites W1997740464 @default.
- W2265192181 cites W2006544565 @default.
- W2265192181 cites W2008869685 @default.
- W2265192181 cites W2022479766 @default.
- W2265192181 cites W2026632606 @default.
- W2265192181 cites W2029864452 @default.
- W2265192181 cites W2032784723 @default.
- W2265192181 cites W2035244987 @default.
- W2265192181 cites W2041101399 @default.
- W2265192181 cites W2041844120 @default.
- W2265192181 cites W2045049630 @default.
- W2265192181 cites W2048289813 @default.
- W2265192181 cites W2056221673 @default.
- W2265192181 cites W2078879103 @default.
- W2265192181 cites W2083465234 @default.
- W2265192181 cites W2084582723 @default.
- W2265192181 cites W2089811952 @default.
- W2265192181 cites W2093829413 @default.
- W2265192181 cites W2103052024 @default.
- W2265192181 cites W2133174524 @default.
- W2265192181 cites W2135293965 @default.
- W2265192181 cites W2149283560 @default.
- W2265192181 cites W2158698691 @default.
- W2265192181 cites W2163094209 @default.
- W2265192181 cites W2279189882 @default.
- W2265192181 cites W4232953319 @default.
- W2265192181 doi "https://doi.org/10.1142/s1469026815500212" @default.
- W2265192181 hasPublicationYear "2015" @default.
- W2265192181 type Work @default.
- W2265192181 sameAs 2265192181 @default.
- W2265192181 citedByCount "7" @default.
- W2265192181 countsByYear W22651921812016 @default.
- W2265192181 countsByYear W22651921812017 @default.
- W2265192181 countsByYear W22651921812019 @default.
- W2265192181 countsByYear W22651921812020 @default.
- W2265192181 countsByYear W22651921812021 @default.
- W2265192181 crossrefType "journal-article" @default.
- W2265192181 hasAuthorship W2265192181A5041714982 @default.
- W2265192181 hasAuthorship W2265192181A5065131156 @default.
- W2265192181 hasAuthorship W2265192181A5067016419 @default.
- W2265192181 hasConcept C119857082 @default.
- W2265192181 hasConcept C124101348 @default.
- W2265192181 hasConcept C13280743 @default.
- W2265192181 hasConcept C153180895 @default.
- W2265192181 hasConcept C154945302 @default.
- W2265192181 hasConcept C185592680 @default.
- W2265192181 hasConcept C185798385 @default.
- W2265192181 hasConcept C198531522 @default.
- W2265192181 hasConcept C205649164 @default.
- W2265192181 hasConcept C41008148 @default.
- W2265192181 hasConcept C43617362 @default.
- W2265192181 hasConcept C50644808 @default.
- W2265192181 hasConcept C79337645 @default.
- W2265192181 hasConcept C81917197 @default.
- W2265192181 hasConceptScore W2265192181C119857082 @default.
- W2265192181 hasConceptScore W2265192181C124101348 @default.
- W2265192181 hasConceptScore W2265192181C13280743 @default.
- W2265192181 hasConceptScore W2265192181C153180895 @default.
- W2265192181 hasConceptScore W2265192181C154945302 @default.
- W2265192181 hasConceptScore W2265192181C185592680 @default.
- W2265192181 hasConceptScore W2265192181C185798385 @default.
- W2265192181 hasConceptScore W2265192181C198531522 @default.
- W2265192181 hasConceptScore W2265192181C205649164 @default.
- W2265192181 hasConceptScore W2265192181C41008148 @default.
- W2265192181 hasConceptScore W2265192181C43617362 @default.
- W2265192181 hasConceptScore W2265192181C50644808 @default.
- W2265192181 hasConceptScore W2265192181C79337645 @default.
- W2265192181 hasConceptScore W2265192181C81917197 @default.
- W2265192181 hasIssue "04" @default.
- W2265192181 hasLocation W22651921811 @default.
- W2265192181 hasOpenAccess W2265192181 @default.
- W2265192181 hasPrimaryLocation W22651921811 @default.
- W2265192181 hasRelatedWork W112744582 @default.
- W2265192181 hasRelatedWork W1485630101 @default.
- W2265192181 hasRelatedWork W2498017833 @default.
- W2265192181 hasRelatedWork W2961085424 @default.
- W2265192181 hasRelatedWork W4285260836 @default.
- W2265192181 hasRelatedWork W4286629047 @default.
- W2265192181 hasRelatedWork W4302085792 @default.
- W2265192181 hasRelatedWork W4306321456 @default.
- W2265192181 hasRelatedWork W4306674287 @default.
- W2265192181 hasRelatedWork W4224009465 @default.
- W2265192181 hasVolume "14" @default.
- W2265192181 isParatext "false" @default.
- W2265192181 isRetracted "false" @default.