Matches in SemOpenAlex for { <https://semopenalex.org/work/W2265217664> ?p ?o ?g. }
- W2265217664 endingPage "100" @default.
- W2265217664 startingPage "74" @default.
- W2265217664 abstract "Purpose – What makes investors tick? Largely counter-intuitive compared to the findings of most past research, this study explores the possibility that funding investors invest in companies based on social relationships, which could be positive or negative, similar or dissimilar. The purpose of this paper is to build a social network graph using data from CrunchBase, the largest public database with profiles about companies. The authors combine social network analysis with the study of investing behavior in order to explore how similarity between investors and companies affects investing behavior through social network analysis. Design/methodology/approach – This study crawls and analyzes data from CrunchBase and builds a social network graph which includes people, companies, social links and funding investment links. The problem is then formalized as a link (or relationship) prediction task in a social network to model and predict (across various machine learning methods and evaluation metrics) whether an investor will create a link to a company in the social network. Various link prediction techniques such as common neighbors, shortest path, Jaccard Coefficient and others are integrated to provide a holistic view of a social network and provide useful insights as to how a pair of nodes may be related (i.e., whether the investor will invest in the particular company at a time) within the social network. Findings – This study finds that funding investors are more likely to invest in a particular company if they have a stronger social relationship in terms of closeness, be it direct or indirect. At the same time, if investors and companies share too many common neighbors, investors are less likely to invest in such companies. Originality/value – The author’s study is among the first to use data from the largest public company profile database of CrunchBase as a social network for research purposes. The author ' s also identify certain social relationship factors that can help prescribe the investor funding behavior. Authors prediction strategy based on these factors and modeling it as a link prediction problem generally works well across the most prominent learning algorithms and perform well in terms of aggregate performance as well as individual industries. In other words, this study would like to encourage companies to focus on social relationship factors in addition to other factors when seeking external funding investments." @default.
- W2265217664 created "2016-06-24" @default.
- W2265217664 creator A5056831863 @default.
- W2265217664 creator A5063114477 @default.
- W2265217664 date "2016-02-01" @default.
- W2265217664 modified "2023-10-16" @default.
- W2265217664 title "Predicting investor funding behavior using crunchbase social network features" @default.
- W2265217664 cites W1556758605 @default.
- W2265217664 cites W1971421925 @default.
- W2265217664 cites W1984298344 @default.
- W2265217664 cites W2008782455 @default.
- W2265217664 cites W2027684023 @default.
- W2265217664 cites W2028994795 @default.
- W2265217664 cites W2031063730 @default.
- W2265217664 cites W2031454682 @default.
- W2265217664 cites W2034664523 @default.
- W2265217664 cites W2039200168 @default.
- W2265217664 cites W2044429396 @default.
- W2265217664 cites W2060133495 @default.
- W2265217664 cites W2061820396 @default.
- W2265217664 cites W2073415627 @default.
- W2265217664 cites W2073531807 @default.
- W2265217664 cites W2075406172 @default.
- W2265217664 cites W2099352187 @default.
- W2265217664 cites W2107569009 @default.
- W2265217664 cites W2111023939 @default.
- W2265217664 cites W2125588186 @default.
- W2265217664 cites W2126981385 @default.
- W2265217664 cites W2130354913 @default.
- W2265217664 cites W2141403143 @default.
- W2265217664 cites W2142517301 @default.
- W2265217664 cites W2145604831 @default.
- W2265217664 cites W2151936673 @default.
- W2265217664 cites W2154454189 @default.
- W2265217664 cites W2168324767 @default.
- W2265217664 cites W2171168084 @default.
- W2265217664 cites W2542727820 @default.
- W2265217664 cites W286295083 @default.
- W2265217664 cites W3121594313 @default.
- W2265217664 cites W3123792552 @default.
- W2265217664 cites W4213009331 @default.
- W2265217664 cites W4230188076 @default.
- W2265217664 cites W4232932184 @default.
- W2265217664 cites W2029824586 @default.
- W2265217664 doi "https://doi.org/10.1108/intr-09-2014-0231" @default.
- W2265217664 hasPublicationYear "2016" @default.
- W2265217664 type Work @default.
- W2265217664 sameAs 2265217664 @default.
- W2265217664 citedByCount "36" @default.
- W2265217664 countsByYear W22652176642017 @default.
- W2265217664 countsByYear W22652176642018 @default.
- W2265217664 countsByYear W22652176642019 @default.
- W2265217664 countsByYear W22652176642020 @default.
- W2265217664 countsByYear W22652176642021 @default.
- W2265217664 countsByYear W22652176642022 @default.
- W2265217664 countsByYear W22652176642023 @default.
- W2265217664 crossrefType "journal-article" @default.
- W2265217664 hasAuthorship W2265217664A5056831863 @default.
- W2265217664 hasAuthorship W2265217664A5063114477 @default.
- W2265217664 hasConcept C10138342 @default.
- W2265217664 hasConcept C103278499 @default.
- W2265217664 hasConcept C114614502 @default.
- W2265217664 hasConcept C114713312 @default.
- W2265217664 hasConcept C115961682 @default.
- W2265217664 hasConcept C134306372 @default.
- W2265217664 hasConcept C136764020 @default.
- W2265217664 hasConcept C137753397 @default.
- W2265217664 hasConcept C144133560 @default.
- W2265217664 hasConcept C153180895 @default.
- W2265217664 hasConcept C154945302 @default.
- W2265217664 hasConcept C162853370 @default.
- W2265217664 hasConcept C203519979 @default.
- W2265217664 hasConcept C2522767166 @default.
- W2265217664 hasConcept C2779545769 @default.
- W2265217664 hasConcept C33923547 @default.
- W2265217664 hasConcept C34947359 @default.
- W2265217664 hasConcept C41008148 @default.
- W2265217664 hasConcept C4727928 @default.
- W2265217664 hasConcept C518677369 @default.
- W2265217664 hasConcept C53811970 @default.
- W2265217664 hasConceptScore W2265217664C10138342 @default.
- W2265217664 hasConceptScore W2265217664C103278499 @default.
- W2265217664 hasConceptScore W2265217664C114614502 @default.
- W2265217664 hasConceptScore W2265217664C114713312 @default.
- W2265217664 hasConceptScore W2265217664C115961682 @default.
- W2265217664 hasConceptScore W2265217664C134306372 @default.
- W2265217664 hasConceptScore W2265217664C136764020 @default.
- W2265217664 hasConceptScore W2265217664C137753397 @default.
- W2265217664 hasConceptScore W2265217664C144133560 @default.
- W2265217664 hasConceptScore W2265217664C153180895 @default.
- W2265217664 hasConceptScore W2265217664C154945302 @default.
- W2265217664 hasConceptScore W2265217664C162853370 @default.
- W2265217664 hasConceptScore W2265217664C203519979 @default.
- W2265217664 hasConceptScore W2265217664C2522767166 @default.
- W2265217664 hasConceptScore W2265217664C2779545769 @default.
- W2265217664 hasConceptScore W2265217664C33923547 @default.
- W2265217664 hasConceptScore W2265217664C34947359 @default.
- W2265217664 hasConceptScore W2265217664C41008148 @default.