Matches in SemOpenAlex for { <https://semopenalex.org/work/W2265337971> ?p ?o ?g. }
- W2265337971 endingPage "411" @default.
- W2265337971 startingPage "392" @default.
- W2265337971 abstract "This paper gives the first correlation bounds under product distributions, including the uniform distribution, against the class mNC1 of polynomial-size O(log n)-depth monotone circuits. Our main theorem, proved using the pathset complexity framework introduced in [56], shows that the average-case k-CYCLE problem (on Erdos-Renyi random graphs with an appropriate edge density) is [EQUATION] hard for mNC1. Combining this result with O'Donnell's hardness amplification theorem [43], we obtain an explicit monotone function of n variables (in the class mSAC1) which is [EQUATION] hard for mNC1 under the uniform distribution for any desired constant e > 0. This bound is nearly best possible, since every monotone function has agreement [EQUATION] with some function in mNC1 [44].Our correlation bounds against mNC1 extend smoothly to non-monotone NC1 circuits with a bounded number of negation gates. Using Holley's monotone coupling theorem [30], we prove the following lemma: with respect to any product distribution, if a balanced monotone function f is [EQUATION] hard for monotone circuits of a given size and depth, then f is [EQUATION] hard for (non-monotone) circuits of the same size and depth with at most t negation gates. We thus achieve a lower bound against NC1 circuits with [EQUATION] log n negation gates, improving the previous record of 1/6 log log n [7]. Our bound on negations is half optimal, since ⌈log(n + 1)⌉ negation gates are known to be fully powerful for NC1 [3, 21]." @default.
- W2265337971 created "2016-06-24" @default.
- W2265337971 creator A5007686466 @default.
- W2265337971 date "2015-06-17" @default.
- W2265337971 modified "2023-09-28" @default.
- W2265337971 title "Correlation bounds against monotone NC" @default.
- W2265337971 cites W112858668 @default.
- W2265337971 cites W1558717344 @default.
- W2265337971 cites W1559492868 @default.
- W2265337971 cites W1559925131 @default.
- W2265337971 cites W1579173797 @default.
- W2265337971 cites W1599622173 @default.
- W2265337971 cites W1645439286 @default.
- W2265337971 cites W1843179613 @default.
- W2265337971 cites W1966278576 @default.
- W2265337971 cites W1972349717 @default.
- W2265337971 cites W1975173196 @default.
- W2265337971 cites W1988762827 @default.
- W2265337971 cites W2001924771 @default.
- W2265337971 cites W2005223599 @default.
- W2265337971 cites W2005938320 @default.
- W2265337971 cites W2008470071 @default.
- W2265337971 cites W2012476164 @default.
- W2265337971 cites W2019010155 @default.
- W2265337971 cites W2024435371 @default.
- W2265337971 cites W2027328186 @default.
- W2265337971 cites W2029109849 @default.
- W2265337971 cites W2036656440 @default.
- W2265337971 cites W2039681975 @default.
- W2265337971 cites W2043629999 @default.
- W2265337971 cites W2045260280 @default.
- W2265337971 cites W2047406446 @default.
- W2265337971 cites W2048563093 @default.
- W2265337971 cites W2049016755 @default.
- W2265337971 cites W2055097525 @default.
- W2265337971 cites W205871068 @default.
- W2265337971 cites W2060270693 @default.
- W2265337971 cites W2069191912 @default.
- W2265337971 cites W2070589948 @default.
- W2265337971 cites W2076458424 @default.
- W2265337971 cites W2077610385 @default.
- W2265337971 cites W2077946919 @default.
- W2265337971 cites W2080529336 @default.
- W2265337971 cites W2082035816 @default.
- W2265337971 cites W2084070217 @default.
- W2265337971 cites W2113692909 @default.
- W2265337971 cites W2119024968 @default.
- W2265337971 cites W2119219964 @default.
- W2265337971 cites W2124619161 @default.
- W2265337971 cites W2125793194 @default.
- W2265337971 cites W2130246629 @default.
- W2265337971 cites W2130956934 @default.
- W2265337971 cites W2143722695 @default.
- W2265337971 cites W2144579822 @default.
- W2265337971 cites W2146466938 @default.
- W2265337971 cites W2152772468 @default.
- W2265337971 cites W2156369551 @default.
- W2265337971 cites W2157569050 @default.
- W2265337971 cites W2160337591 @default.
- W2265337971 cites W2160403361 @default.
- W2265337971 cites W2166965860 @default.
- W2265337971 cites W2168115971 @default.
- W2265337971 cites W2173249896 @default.
- W2265337971 cites W2176265082 @default.
- W2265337971 cites W2294221698 @default.
- W2265337971 cites W2311242405 @default.
- W2265337971 cites W2398060092 @default.
- W2265337971 cites W2742022539 @default.
- W2265337971 cites W2752055179 @default.
- W2265337971 cites W2785960849 @default.
- W2265337971 cites W2912057363 @default.
- W2265337971 cites W2912962911 @default.
- W2265337971 cites W622266756 @default.
- W2265337971 doi "https://doi.org/10.5555/2833227.2833247" @default.
- W2265337971 hasPublicationYear "2015" @default.
- W2265337971 type Work @default.
- W2265337971 sameAs 2265337971 @default.
- W2265337971 citedByCount "7" @default.
- W2265337971 countsByYear W22653379712015 @default.
- W2265337971 countsByYear W22653379712016 @default.
- W2265337971 countsByYear W22653379712017 @default.
- W2265337971 countsByYear W22653379712018 @default.
- W2265337971 countsByYear W22653379712019 @default.
- W2265337971 crossrefType "proceedings-article" @default.
- W2265337971 hasAuthorship W2265337971A5007686466 @default.
- W2265337971 hasConcept C114614502 @default.
- W2265337971 hasConcept C118615104 @default.
- W2265337971 hasConcept C119599485 @default.
- W2265337971 hasConcept C127413603 @default.
- W2265337971 hasConcept C134146338 @default.
- W2265337971 hasConcept C134306372 @default.
- W2265337971 hasConcept C14036430 @default.
- W2265337971 hasConcept C195292467 @default.
- W2265337971 hasConcept C2524010 @default.
- W2265337971 hasConcept C2834757 @default.
- W2265337971 hasConcept C33923547 @default.
- W2265337971 hasConcept C34388435 @default.
- W2265337971 hasConcept C63553672 @default.