Matches in SemOpenAlex for { <https://semopenalex.org/work/W2265421137> ?p ?o ?g. }
- W2265421137 endingPage "37" @default.
- W2265421137 startingPage "37" @default.
- W2265421137 abstract "The scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC) and Bayesian network- (BN) based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS) to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertaken." @default.
- W2265421137 created "2016-06-24" @default.
- W2265421137 creator A5007686924 @default.
- W2265421137 creator A5042715991 @default.
- W2265421137 creator A5062437800 @default.
- W2265421137 creator A5065659291 @default.
- W2265421137 date "2016-01-23" @default.
- W2265421137 modified "2023-09-30" @default.
- W2265421137 title "Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models: A Case Study of an Andean Regulated River Basin" @default.
- W2265421137 cites W1487310753 @default.
- W2265421137 cites W1495935281 @default.
- W2265421137 cites W1507358871 @default.
- W2265421137 cites W1834081490 @default.
- W2265421137 cites W1966428504 @default.
- W2265421137 cites W1967992376 @default.
- W2265421137 cites W1978323572 @default.
- W2265421137 cites W1985394156 @default.
- W2265421137 cites W1990268136 @default.
- W2265421137 cites W1999687643 @default.
- W2265421137 cites W2000167890 @default.
- W2265421137 cites W2002368485 @default.
- W2265421137 cites W2005794162 @default.
- W2265421137 cites W2008404657 @default.
- W2265421137 cites W2023298201 @default.
- W2265421137 cites W2027176053 @default.
- W2265421137 cites W2027553546 @default.
- W2265421137 cites W2032597947 @default.
- W2265421137 cites W2035759606 @default.
- W2265421137 cites W2046548554 @default.
- W2265421137 cites W2054440870 @default.
- W2265421137 cites W2059078244 @default.
- W2265421137 cites W2064186236 @default.
- W2265421137 cites W2066423313 @default.
- W2265421137 cites W2069878929 @default.
- W2265421137 cites W2072932830 @default.
- W2265421137 cites W2073803083 @default.
- W2265421137 cites W2075409015 @default.
- W2265421137 cites W2076488361 @default.
- W2265421137 cites W2079436405 @default.
- W2265421137 cites W2079605058 @default.
- W2265421137 cites W2081652617 @default.
- W2265421137 cites W2082409570 @default.
- W2265421137 cites W2085979040 @default.
- W2265421137 cites W2086298205 @default.
- W2265421137 cites W2090031994 @default.
- W2265421137 cites W2095187829 @default.
- W2265421137 cites W2102441298 @default.
- W2265421137 cites W2104157175 @default.
- W2265421137 cites W2108614290 @default.
- W2265421137 cites W2121360982 @default.
- W2265421137 cites W2125623572 @default.
- W2265421137 cites W2130997496 @default.
- W2265421137 cites W2138644141 @default.
- W2265421137 cites W2163592253 @default.
- W2265421137 cites W2164026151 @default.
- W2265421137 cites W2180087856 @default.
- W2265421137 doi "https://doi.org/10.3390/w8020037" @default.
- W2265421137 hasPublicationYear "2016" @default.
- W2265421137 type Work @default.
- W2265421137 sameAs 2265421137 @default.
- W2265421137 citedByCount "30" @default.
- W2265421137 countsByYear W22654211372016 @default.
- W2265421137 countsByYear W22654211372017 @default.
- W2265421137 countsByYear W22654211372018 @default.
- W2265421137 countsByYear W22654211372019 @default.
- W2265421137 countsByYear W22654211372020 @default.
- W2265421137 countsByYear W22654211372021 @default.
- W2265421137 countsByYear W22654211372022 @default.
- W2265421137 countsByYear W22654211372023 @default.
- W2265421137 crossrefType "journal-article" @default.
- W2265421137 hasAuthorship W2265421137A5007686924 @default.
- W2265421137 hasAuthorship W2265421137A5042715991 @default.
- W2265421137 hasAuthorship W2265421137A5062437800 @default.
- W2265421137 hasAuthorship W2265421137A5065659291 @default.
- W2265421137 hasBestOaLocation W22654211371 @default.
- W2265421137 hasConcept C107673813 @default.
- W2265421137 hasConcept C107826830 @default.
- W2265421137 hasConcept C109007969 @default.
- W2265421137 hasConcept C119857082 @default.
- W2265421137 hasConcept C126645576 @default.
- W2265421137 hasConcept C127313418 @default.
- W2265421137 hasConcept C127413603 @default.
- W2265421137 hasConcept C149782125 @default.
- W2265421137 hasConcept C151730666 @default.
- W2265421137 hasConcept C153823671 @default.
- W2265421137 hasConcept C154945302 @default.
- W2265421137 hasConcept C17618745 @default.
- W2265421137 hasConcept C187320778 @default.
- W2265421137 hasConcept C18903297 @default.
- W2265421137 hasConcept C205649164 @default.
- W2265421137 hasConcept C33724603 @default.
- W2265421137 hasConcept C33923547 @default.
- W2265421137 hasConcept C39432304 @default.
- W2265421137 hasConcept C41008148 @default.
- W2265421137 hasConcept C49204034 @default.
- W2265421137 hasConcept C49937458 @default.
- W2265421137 hasConcept C51193700 @default.
- W2265421137 hasConcept C524765639 @default.