Matches in SemOpenAlex for { <https://semopenalex.org/work/W2265638863> ?p ?o ?g. }
- W2265638863 endingPage "20" @default.
- W2265638863 startingPage "1" @default.
- W2265638863 abstract "Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed framework adopts the wavelet soft-thresholding method to remove the noises or errors in data streams. Based on the refined data streams, we develop effective period pattern recognition and feature extraction techniques to improve the computational efficiency. We use classification methods for anomaly detection in the corrected data stream. We also empirically show that the proposed approach shows a high accuracy of anomaly detection on several real datasets." @default.
- W2265638863 created "2016-06-24" @default.
- W2265638863 creator A5002768704 @default.
- W2265638863 creator A5011802609 @default.
- W2265638863 creator A5049750015 @default.
- W2265638863 creator A5059068224 @default.
- W2265638863 creator A5076869167 @default.
- W2265638863 date "2016-01-22" @default.
- W2265638863 modified "2023-10-16" @default.
- W2265638863 title "Supervised Anomaly Detection in Uncertain Pseudoperiodic Data Streams" @default.
- W2265638863 cites W1801768344 @default.
- W2265638863 cites W190850039 @default.
- W2265638863 cites W1925312670 @default.
- W2265638863 cites W1964219482 @default.
- W2265638863 cites W1977556410 @default.
- W2265638863 cites W1979578660 @default.
- W2265638863 cites W1980096475 @default.
- W2265638863 cites W1981398125 @default.
- W2265638863 cites W1981934656 @default.
- W2265638863 cites W1985951157 @default.
- W2265638863 cites W1987971958 @default.
- W2265638863 cites W2030443509 @default.
- W2265638863 cites W2036997784 @default.
- W2265638863 cites W2039722754 @default.
- W2265638863 cites W2059359375 @default.
- W2265638863 cites W2065426594 @default.
- W2265638863 cites W2065500976 @default.
- W2265638863 cites W2081028405 @default.
- W2265638863 cites W2085533912 @default.
- W2265638863 cites W2089686701 @default.
- W2265638863 cites W2097054885 @default.
- W2265638863 cites W2101924112 @default.
- W2265638863 cites W2103414007 @default.
- W2265638863 cites W2105510466 @default.
- W2265638863 cites W2106224901 @default.
- W2265638863 cites W2106570511 @default.
- W2265638863 cites W2110134662 @default.
- W2265638863 cites W2116316066 @default.
- W2265638863 cites W2122123235 @default.
- W2265638863 cites W2122233046 @default.
- W2265638863 cites W2123257880 @default.
- W2265638863 cites W2124459709 @default.
- W2265638863 cites W2127913883 @default.
- W2265638863 cites W2135428579 @default.
- W2265638863 cites W2144342293 @default.
- W2265638863 cites W2146842127 @default.
- W2265638863 cites W2149472588 @default.
- W2265638863 cites W2162800060 @default.
- W2265638863 cites W4232534713 @default.
- W2265638863 doi "https://doi.org/10.1145/2806890" @default.
- W2265638863 hasPublicationYear "2016" @default.
- W2265638863 type Work @default.
- W2265638863 sameAs 2265638863 @default.
- W2265638863 citedByCount "71" @default.
- W2265638863 countsByYear W22656388632016 @default.
- W2265638863 countsByYear W22656388632017 @default.
- W2265638863 countsByYear W22656388632018 @default.
- W2265638863 countsByYear W22656388632019 @default.
- W2265638863 countsByYear W22656388632020 @default.
- W2265638863 countsByYear W22656388632021 @default.
- W2265638863 countsByYear W22656388632022 @default.
- W2265638863 countsByYear W22656388632023 @default.
- W2265638863 crossrefType "journal-article" @default.
- W2265638863 hasAuthorship W2265638863A5002768704 @default.
- W2265638863 hasAuthorship W2265638863A5011802609 @default.
- W2265638863 hasAuthorship W2265638863A5049750015 @default.
- W2265638863 hasAuthorship W2265638863A5059068224 @default.
- W2265638863 hasAuthorship W2265638863A5076869167 @default.
- W2265638863 hasBestOaLocation W22656388632 @default.
- W2265638863 hasConcept C115961682 @default.
- W2265638863 hasConcept C121332964 @default.
- W2265638863 hasConcept C124101348 @default.
- W2265638863 hasConcept C12997251 @default.
- W2265638863 hasConcept C138885662 @default.
- W2265638863 hasConcept C153180895 @default.
- W2265638863 hasConcept C154945302 @default.
- W2265638863 hasConcept C191178318 @default.
- W2265638863 hasConcept C26873012 @default.
- W2265638863 hasConcept C2776401178 @default.
- W2265638863 hasConcept C2778484313 @default.
- W2265638863 hasConcept C31258907 @default.
- W2265638863 hasConcept C41008148 @default.
- W2265638863 hasConcept C41895202 @default.
- W2265638863 hasConcept C42090638 @default.
- W2265638863 hasConcept C47432892 @default.
- W2265638863 hasConcept C739882 @default.
- W2265638863 hasConcept C76155785 @default.
- W2265638863 hasConcept C89198739 @default.
- W2265638863 hasConceptScore W2265638863C115961682 @default.
- W2265638863 hasConceptScore W2265638863C121332964 @default.
- W2265638863 hasConceptScore W2265638863C124101348 @default.
- W2265638863 hasConceptScore W2265638863C12997251 @default.
- W2265638863 hasConceptScore W2265638863C138885662 @default.
- W2265638863 hasConceptScore W2265638863C153180895 @default.
- W2265638863 hasConceptScore W2265638863C154945302 @default.
- W2265638863 hasConceptScore W2265638863C191178318 @default.
- W2265638863 hasConceptScore W2265638863C26873012 @default.
- W2265638863 hasConceptScore W2265638863C2776401178 @default.