Matches in SemOpenAlex for { <https://semopenalex.org/work/W2266165715> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2266165715 abstract "The evolution of the price of two financial assets may be modeled by correlated geometric Brownian motion with additional, independent, finite activity jumps. Similarly, the evolution of the price of one financial asset may be modeled by a stochastic volatility process and finite activity jumps. The value of a contingent claim, written on assets where the underlying evolves by either of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic, partial integro-differential equation (PIDE). The focus of this thesis is the development of new, efficient numerical solution approaches for these PIDE’s for both linear and non-linear cases. A localization scheme approximates the initial-value problem on an infinite spatial domain by an initial-boundary value problem on a finite spatial domain. Convergence of the localization method is proved using a Green’s function approach. An implicit, finite difference method discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation are examined under both maximum and von Neumann analysis. Three linearly convergent, monotone variants of the approach are reviewed for the constant coefficient, two-asset case and reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE. A fixed point iteration solves the discrete, algebraic equations at each time step. This iteration avoids solving a dense linear system through the use of a lagged integral evaluation. Dense matrix-vector multiplication is avoided by using an FFT method. By using Green’s function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is shown to be rapidly convergent under typical market parameters. Combined with a penalty iteration, the value of options with an American early exercise feature may be computed. The rapid convergence of the iteration is verified in numerical tests using European and American options with vanilla payoffs, and digital, one-touch option payoffs. These tests indicate that the localization method for the PIDE’s is effective. Adaptations are developed for degenerate or extreme parameter sets. The three monotone approaches are compared by computational cost and resulting error. For the stochastic volatility case, grid rotation is found to be the preferred approach. Finally, a new algorithm is developed for the solution of option values in the non-linear case of a two-factor option where the jump parameters are known only to within a deterministic range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization is used and a new fixed point, policy iteration developed for time step solution. Analysis proves that the new iteration is globally convergent under a mild time step restriction. Numerical tests demonstrate the overall convergence of the method and investigate the financial implications of uncertain parameters on the option value." @default.
- W2266165715 created "2016-06-24" @default.
- W2266165715 creator A5068721542 @default.
- W2266165715 date "2007-01-01" @default.
- W2266165715 modified "2023-09-27" @default.
- W2266165715 title "Linear and non-linear monotone methods for valuing financial options under two-factor, jump-diffusion models" @default.
- W2266165715 hasPublicationYear "2007" @default.
- W2266165715 type Work @default.
- W2266165715 sameAs 2266165715 @default.
- W2266165715 citedByCount "1" @default.
- W2266165715 countsByYear W22661657152020 @default.
- W2266165715 crossrefType "dissertation" @default.
- W2266165715 hasAuthorship W2266165715A5068721542 @default.
- W2266165715 hasConcept C134306372 @default.
- W2266165715 hasConcept C149782125 @default.
- W2266165715 hasConcept C181330731 @default.
- W2266165715 hasConcept C2524010 @default.
- W2266165715 hasConcept C26955809 @default.
- W2266165715 hasConcept C2834757 @default.
- W2266165715 hasConcept C28826006 @default.
- W2266165715 hasConcept C33923547 @default.
- W2266165715 hasConcept C85393063 @default.
- W2266165715 hasConcept C91602232 @default.
- W2266165715 hasConceptScore W2266165715C134306372 @default.
- W2266165715 hasConceptScore W2266165715C149782125 @default.
- W2266165715 hasConceptScore W2266165715C181330731 @default.
- W2266165715 hasConceptScore W2266165715C2524010 @default.
- W2266165715 hasConceptScore W2266165715C26955809 @default.
- W2266165715 hasConceptScore W2266165715C2834757 @default.
- W2266165715 hasConceptScore W2266165715C28826006 @default.
- W2266165715 hasConceptScore W2266165715C33923547 @default.
- W2266165715 hasConceptScore W2266165715C85393063 @default.
- W2266165715 hasConceptScore W2266165715C91602232 @default.
- W2266165715 hasLocation W22661657151 @default.
- W2266165715 hasOpenAccess W2266165715 @default.
- W2266165715 hasPrimaryLocation W22661657151 @default.
- W2266165715 hasRelatedWork W101377108 @default.
- W2266165715 hasRelatedWork W1473971922 @default.
- W2266165715 hasRelatedWork W1745672195 @default.
- W2266165715 hasRelatedWork W1966960624 @default.
- W2266165715 hasRelatedWork W1991212624 @default.
- W2266165715 hasRelatedWork W2028720793 @default.
- W2266165715 hasRelatedWork W2113950602 @default.
- W2266165715 hasRelatedWork W2176418821 @default.
- W2266165715 hasRelatedWork W2368861806 @default.
- W2266165715 hasRelatedWork W2473619851 @default.
- W2266165715 hasRelatedWork W2533010719 @default.
- W2266165715 hasRelatedWork W2755357491 @default.
- W2266165715 hasRelatedWork W2789586952 @default.
- W2266165715 hasRelatedWork W2891441787 @default.
- W2266165715 hasRelatedWork W2908740245 @default.
- W2266165715 hasRelatedWork W2986409686 @default.
- W2266165715 hasRelatedWork W3121434601 @default.
- W2266165715 hasRelatedWork W3125663632 @default.
- W2266165715 hasRelatedWork W3137564024 @default.
- W2266165715 hasRelatedWork W3149738994 @default.
- W2266165715 isParatext "false" @default.
- W2266165715 isRetracted "false" @default.
- W2266165715 magId "2266165715" @default.
- W2266165715 workType "dissertation" @default.