Matches in SemOpenAlex for { <https://semopenalex.org/work/W2266462593> ?p ?o ?g. }
- W2266462593 endingPage "78" @default.
- W2266462593 startingPage "41" @default.
- W2266462593 abstract "Data assimilation combines information from models, measurements, and priors to obtain improved estimates of the state of a dynamical system such as the atmosphere. Ensemble-based data assimilation approaches such as the Ensemble Kalman filter (EnKF) have gained wide popularity due to their simple formulation, ease of implementation, and good practical results. Many of these methods are derived under the assumption that the underlying probability distributions are Gaussian. It is well accepted, however, that the Gaussianity assumption is too restrictive when applied to large nonlinear models, nonlinear observation operators, and large levels of uncertainty. When the Gaussianity assumptions are severely violated, the performance of EnKF variations degrades. This paper proposes a new ensemble-based data assimilation method, named the <em>sampling filter</em>, which obtains the analysis by sampling directly from the posterior distribution. The sampling strategy is based on a Hybrid Monte Carlo (HMC) approach that can handle non-Gaussian probability distributions. Numerical experiments are carried out using the Lorenz-96 model and observation operators with different levels of non-linearity and differentiability. The proposed filter is also tested with shallow water model on a sphere with linear observation operator. Numerical results show that the sampling filter performs well even in highly nonlinear situations where the traditional filters diverge." @default.
- W2266462593 created "2016-06-24" @default.
- W2266462593 creator A5008436217 @default.
- W2266462593 creator A5082752382 @default.
- W2266462593 date "2015-01-01" @default.
- W2266462593 modified "2023-10-06" @default.
- W2266462593 title "A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation" @default.
- W2266462593 cites W12587120 @default.
- W2266462593 cites W1522319528 @default.
- W2266462593 cites W1545319692 @default.
- W2266462593 cites W1548483044 @default.
- W2266462593 cites W1587348082 @default.
- W2266462593 cites W1596195796 @default.
- W2266462593 cites W195465510 @default.
- W2266462593 cites W1981514681 @default.
- W2266462593 cites W1984310153 @default.
- W2266462593 cites W1984350169 @default.
- W2266462593 cites W1987308763 @default.
- W2266462593 cites W1989350030 @default.
- W2266462593 cites W1993512681 @default.
- W2266462593 cites W2001250891 @default.
- W2266462593 cites W2009104157 @default.
- W2266462593 cites W2025179796 @default.
- W2266462593 cites W2026467797 @default.
- W2266462593 cites W2027060966 @default.
- W2266462593 cites W2049013344 @default.
- W2266462593 cites W2052320843 @default.
- W2266462593 cites W2056760934 @default.
- W2266462593 cites W2059448777 @default.
- W2266462593 cites W2069739265 @default.
- W2266462593 cites W2077611006 @default.
- W2266462593 cites W2077937893 @default.
- W2266462593 cites W2079075738 @default.
- W2266462593 cites W2083402998 @default.
- W2266462593 cites W2084367325 @default.
- W2266462593 cites W2089556301 @default.
- W2266462593 cites W2091019041 @default.
- W2266462593 cites W2092899197 @default.
- W2266462593 cites W2098613108 @default.
- W2266462593 cites W2104647893 @default.
- W2266462593 cites W2105934661 @default.
- W2266462593 cites W2113767669 @default.
- W2266462593 cites W2134255235 @default.
- W2266462593 cites W2136796925 @default.
- W2266462593 cites W2138565515 @default.
- W2266462593 cites W2146803308 @default.
- W2266462593 cites W2147119488 @default.
- W2266462593 cites W2150440946 @default.
- W2266462593 cites W2150951085 @default.
- W2266462593 cites W2157098139 @default.
- W2266462593 cites W2157158162 @default.
- W2266462593 cites W2161358768 @default.
- W2266462593 cites W2165889544 @default.
- W2266462593 cites W2167949596 @default.
- W2266462593 cites W2173190456 @default.
- W2266462593 cites W2176150232 @default.
- W2266462593 cites W2179584279 @default.
- W2266462593 cites W2179860363 @default.
- W2266462593 cites W2180946617 @default.
- W2266462593 cites W2187264931 @default.
- W2266462593 cites W2478027467 @default.
- W2266462593 cites W2509665490 @default.
- W2266462593 cites W2950944036 @default.
- W2266462593 cites W2963977107 @default.
- W2266462593 cites W2964103113 @default.
- W2266462593 cites W3102212431 @default.
- W2266462593 cites W3204157529 @default.
- W2266462593 cites W95577512 @default.
- W2266462593 doi "https://doi.org/10.3934/geosci.2015.1.41" @default.
- W2266462593 hasPublicationYear "2015" @default.
- W2266462593 type Work @default.
- W2266462593 sameAs 2266462593 @default.
- W2266462593 citedByCount "15" @default.
- W2266462593 countsByYear W22664625932016 @default.
- W2266462593 countsByYear W22664625932018 @default.
- W2266462593 countsByYear W22664625932019 @default.
- W2266462593 countsByYear W22664625932020 @default.
- W2266462593 countsByYear W22664625932021 @default.
- W2266462593 countsByYear W22664625932022 @default.
- W2266462593 crossrefType "journal-article" @default.
- W2266462593 hasAuthorship W2266462593A5008436217 @default.
- W2266462593 hasAuthorship W2266462593A5082752382 @default.
- W2266462593 hasBestOaLocation W22664625931 @default.
- W2266462593 hasConcept C105795698 @default.
- W2266462593 hasConcept C106131492 @default.
- W2266462593 hasConcept C107673813 @default.
- W2266462593 hasConcept C111350023 @default.
- W2266462593 hasConcept C11413529 @default.
- W2266462593 hasConcept C121332964 @default.
- W2266462593 hasConcept C126255220 @default.
- W2266462593 hasConcept C13153151 @default.
- W2266462593 hasConcept C140779682 @default.
- W2266462593 hasConcept C153294291 @default.
- W2266462593 hasConcept C154945302 @default.
- W2266462593 hasConcept C157286648 @default.
- W2266462593 hasConcept C158622935 @default.
- W2266462593 hasConcept C163716315 @default.
- W2266462593 hasConcept C177769412 @default.