Matches in SemOpenAlex for { <https://semopenalex.org/work/W2266495731> ?p ?o ?g. }
- W2266495731 abstract "Web 2.0 platforms such as forums, blogs and wikis allow users from its community to contribute content. However, users often received little if any professional training in content creation and content is commonly published without peer review. Excessive low quality user contributions can lead to information overload, which describes the situation when a user feels overwhelmed with unwanted information. Information overload can cause users to withdraw from using a website therefore decreasing a website's overall sustainability through the loss of users from its community.Many Web 2.0 websites have relied on its users to manually rate the quality of User Generated Content (UGC) to deal with this problem. However, the major problems with this approach is that rating is voluntary so a large percentage of content often receives a lack of rating and UGC is often created at a faster rate than which it can be sufficiently rated. Therefore, automated content quality assessment models are required to address the problems caused by manual user rating.A number of automated models have been proposed in recent years for Web 2.0 platforms. However, we identified many limitations with these existing models in our literature review. For example, the majority of models are only suitable for a specific language such as English and have not effectively considered how content is used by the user community in the assessment process. Therefore, we propose a novel and language independent model that evaluates content, usage, reputation, temporal and structural dimensions of UGC for quality assessment to address these limitations..We developed our model using Web technologies and a supervised machine learning approach. More specifically, we employed a rule learner, a fuzzy logic classifier and Support Vector Machines. We validated our model on three operational Web forums and outperformed existing models in the literature in our experiments. We used the Friedman Test and Nemenyi test to verify our results and discovered that the performance improvements generated by our model are statistically significant over the existing models." @default.
- W2266495731 created "2016-06-24" @default.
- W2266495731 creator A5037266998 @default.
- W2266495731 date "2011-01-01" @default.
- W2266495731 modified "2023-09-24" @default.
- W2266495731 title "A machine learning-based approach for automated quality assessment of user generated content in web forums" @default.
- W2266495731 cites W1481128830 @default.
- W2266495731 cites W1484727516 @default.
- W2266495731 cites W1491609458 @default.
- W2266495731 cites W1495061682 @default.
- W2266495731 cites W1515087027 @default.
- W2266495731 cites W1516358640 @default.
- W2266495731 cites W1517003397 @default.
- W2266495731 cites W1523293200 @default.
- W2266495731 cites W1525657896 @default.
- W2266495731 cites W1537691903 @default.
- W2266495731 cites W1538622809 @default.
- W2266495731 cites W1556103935 @default.
- W2266495731 cites W1558163674 @default.
- W2266495731 cites W1561082337 @default.
- W2266495731 cites W1565746575 @default.
- W2266495731 cites W1567491469 @default.
- W2266495731 cites W1585743408 @default.
- W2266495731 cites W1601740268 @default.
- W2266495731 cites W1602368597 @default.
- W2266495731 cites W1667963402 @default.
- W2266495731 cites W1678889691 @default.
- W2266495731 cites W168033763 @default.
- W2266495731 cites W1681967330 @default.
- W2266495731 cites W169460412 @default.
- W2266495731 cites W1808099759 @default.
- W2266495731 cites W1966188439 @default.
- W2266495731 cites W1967390364 @default.
- W2266495731 cites W1972644898 @default.
- W2266495731 cites W1974758710 @default.
- W2266495731 cites W1980617483 @default.
- W2266495731 cites W1981057947 @default.
- W2266495731 cites W1996070121 @default.
- W2266495731 cites W1997556834 @default.
- W2266495731 cites W2002645541 @default.
- W2266495731 cites W2004291985 @default.
- W2266495731 cites W2008117322 @default.
- W2266495731 cites W2009543464 @default.
- W2266495731 cites W2012444665 @default.
- W2266495731 cites W2016944307 @default.
- W2266495731 cites W2019032942 @default.
- W2266495731 cites W2019421101 @default.
- W2266495731 cites W2020867023 @default.
- W2266495731 cites W2021945153 @default.
- W2266495731 cites W2024024274 @default.
- W2266495731 cites W2028299291 @default.
- W2266495731 cites W2030286952 @default.
- W2266495731 cites W2031540849 @default.
- W2266495731 cites W2034334856 @default.
- W2266495731 cites W2035968424 @default.
- W2266495731 cites W2037512490 @default.
- W2266495731 cites W2037858832 @default.
- W2266495731 cites W2048498434 @default.
- W2266495731 cites W2048662314 @default.
- W2266495731 cites W2050663012 @default.
- W2266495731 cites W2051885135 @default.
- W2266495731 cites W2053522862 @default.
- W2266495731 cites W2055485077 @default.
- W2266495731 cites W2057415299 @default.
- W2266495731 cites W2061554433 @default.
- W2266495731 cites W2062020370 @default.
- W2266495731 cites W2063771604 @default.
- W2266495731 cites W2074680184 @default.
- W2266495731 cites W2075843680 @default.
- W2266495731 cites W2077513286 @default.
- W2266495731 cites W2095030488 @default.
- W2266495731 cites W2098930119 @default.
- W2266495731 cites W2101873342 @default.
- W2266495731 cites W2104290389 @default.
- W2266495731 cites W2107432340 @default.
- W2266495731 cites W2108995755 @default.
- W2266495731 cites W2109943925 @default.
- W2266495731 cites W2110996607 @default.
- W2266495731 cites W2111145310 @default.
- W2266495731 cites W2112188685 @default.
- W2266495731 cites W2116441169 @default.
- W2266495731 cites W2117366235 @default.
- W2266495731 cites W2118553383 @default.
- W2266495731 cites W2119671065 @default.
- W2266495731 cites W2120955128 @default.
- W2266495731 cites W2121812884 @default.
- W2266495731 cites W2123504579 @default.
- W2266495731 cites W2123622235 @default.
- W2266495731 cites W2129538325 @default.
- W2266495731 cites W2132549764 @default.
- W2266495731 cites W2133990480 @default.
- W2266495731 cites W2136451344 @default.
- W2266495731 cites W2136504847 @default.
- W2266495731 cites W2139236490 @default.
- W2266495731 cites W2140929211 @default.
- W2266495731 cites W2142094977 @default.
- W2266495731 cites W2147314133 @default.
- W2266495731 cites W2149274557 @default.
- W2266495731 cites W2151461605 @default.
- W2266495731 cites W2152006930 @default.