Matches in SemOpenAlex for { <https://semopenalex.org/work/W2266655910> ?p ?o ?g. }
- W2266655910 endingPage "114" @default.
- W2266655910 startingPage "101" @default.
- W2266655910 abstract "This article develops a new Markov-switching vector autoregressive (VAR) model with stochastic correlation for contagion analysis on financial markets. The correlation and the log-volatility dynamics are driven by two independent Markov chains, thus allowing for different effects such as volatility spill-overs and correlation shifts with various degrees of intensity. We outline a suitable Bayesian inference procedure based on Markov chain Monte Carlo algorithms. We then apply the model to some major and Asian-Pacific cross rates against the U.S. dollar and find strong evidence supporting the existence of contagion effects and correlation drops during crises, closely in line with the stylized facts outlined in the contagion literature. A comparison of this model with its closest competitors, such as a time-varying parameter VAR, reveals that our model has a better predictive ability. Supplementary materials for this article are available online" @default.
- W2266655910 created "2016-06-24" @default.
- W2266655910 creator A5012090222 @default.
- W2266655910 creator A5042139235 @default.
- W2266655910 creator A5058836069 @default.
- W2266655910 date "2017-04-27" @default.
- W2266655910 modified "2023-10-01" @default.
- W2266655910 title "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets" @default.
- W2266655910 cites W1603903339 @default.
- W2266655910 cites W1727659491 @default.
- W2266655910 cites W1967238670 @default.
- W2266655910 cites W1970744674 @default.
- W2266655910 cites W1977480757 @default.
- W2266655910 cites W1985789769 @default.
- W2266655910 cites W1988500399 @default.
- W2266655910 cites W1988861049 @default.
- W2266655910 cites W1990038976 @default.
- W2266655910 cites W1991716021 @default.
- W2266655910 cites W1998968611 @default.
- W2266655910 cites W2005872216 @default.
- W2266655910 cites W2006209738 @default.
- W2266655910 cites W2010747041 @default.
- W2266655910 cites W2011090480 @default.
- W2266655910 cites W2019459021 @default.
- W2266655910 cites W2025720061 @default.
- W2266655910 cites W2029881813 @default.
- W2266655910 cites W2045411880 @default.
- W2266655910 cites W2062510159 @default.
- W2266655910 cites W2063593194 @default.
- W2266655910 cites W2064553712 @default.
- W2266655910 cites W2070585177 @default.
- W2266655910 cites W2071308900 @default.
- W2266655910 cites W2107335183 @default.
- W2266655910 cites W2113422836 @default.
- W2266655910 cites W2113456190 @default.
- W2266655910 cites W2113667289 @default.
- W2266655910 cites W2120526182 @default.
- W2266655910 cites W2136847851 @default.
- W2266655910 cites W2144246192 @default.
- W2266655910 cites W2152977846 @default.
- W2266655910 cites W2153155589 @default.
- W2266655910 cites W2153947535 @default.
- W2266655910 cites W2161808462 @default.
- W2266655910 cites W2741974588 @default.
- W2266655910 cites W3121573968 @default.
- W2266655910 cites W3121583322 @default.
- W2266655910 cites W3122012037 @default.
- W2266655910 cites W3122259200 @default.
- W2266655910 cites W3122593262 @default.
- W2266655910 cites W3122870494 @default.
- W2266655910 cites W3123042444 @default.
- W2266655910 cites W3123068586 @default.
- W2266655910 cites W3123128110 @default.
- W2266655910 cites W3123933399 @default.
- W2266655910 cites W3124444187 @default.
- W2266655910 cites W3124792793 @default.
- W2266655910 cites W3125274857 @default.
- W2266655910 cites W3125463612 @default.
- W2266655910 cites W3125564657 @default.
- W2266655910 cites W3125775736 @default.
- W2266655910 cites W3125888116 @default.
- W2266655910 cites W3125983622 @default.
- W2266655910 cites W4211177544 @default.
- W2266655910 doi "https://doi.org/10.1080/07350015.2015.1137757" @default.
- W2266655910 hasPublicationYear "2017" @default.
- W2266655910 type Work @default.
- W2266655910 sameAs 2266655910 @default.
- W2266655910 citedByCount "25" @default.
- W2266655910 countsByYear W22666559102017 @default.
- W2266655910 countsByYear W22666559102018 @default.
- W2266655910 countsByYear W22666559102019 @default.
- W2266655910 countsByYear W22666559102020 @default.
- W2266655910 countsByYear W22666559102021 @default.
- W2266655910 countsByYear W22666559102022 @default.
- W2266655910 countsByYear W22666559102023 @default.
- W2266655910 crossrefType "journal-article" @default.
- W2266655910 hasAuthorship W2266655910A5012090222 @default.
- W2266655910 hasAuthorship W2266655910A5042139235 @default.
- W2266655910 hasAuthorship W2266655910A5058836069 @default.
- W2266655910 hasBestOaLocation W22666559102 @default.
- W2266655910 hasConcept C105795698 @default.
- W2266655910 hasConcept C107673813 @default.
- W2266655910 hasConcept C111350023 @default.
- W2266655910 hasConcept C139719470 @default.
- W2266655910 hasConcept C149782125 @default.
- W2266655910 hasConcept C159877910 @default.
- W2266655910 hasConcept C160234255 @default.
- W2266655910 hasConcept C162324750 @default.
- W2266655910 hasConcept C23922673 @default.
- W2266655910 hasConcept C33923547 @default.
- W2266655910 hasConcept C38935604 @default.
- W2266655910 hasConcept C41008148 @default.
- W2266655910 hasConcept C91602232 @default.
- W2266655910 hasConcept C98763669 @default.
- W2266655910 hasConceptScore W2266655910C105795698 @default.
- W2266655910 hasConceptScore W2266655910C107673813 @default.
- W2266655910 hasConceptScore W2266655910C111350023 @default.
- W2266655910 hasConceptScore W2266655910C139719470 @default.