Matches in SemOpenAlex for { <https://semopenalex.org/work/W2266804559> ?p ?o ?g. }
- W2266804559 abstract "Deep CCA is a recently proposed deep neural network extension to the traditional canonical correlation analysis (CCA), and has been successful for multi-view representation learning in several domains. However, stochastic optimization of the deep CCA objective is not straightforward, because it does not decouple over training examples. Previous optimizers for deep CCA are either batch-based algorithms or stochastic optimization using large minibatches, which can have high memory consumption. In this paper, we tackle the problem of stochastic optimization for deep CCA with small minibatches, based on an iterative solution to the CCA objective, and show that we can achieve as good performance as previous optimizers and thus alleviate the memory requirement." @default.
- W2266804559 created "2016-06-24" @default.
- W2266804559 creator A5005239198 @default.
- W2266804559 creator A5015602781 @default.
- W2266804559 creator A5063457506 @default.
- W2266804559 creator A5070613374 @default.
- W2266804559 date "2015-10-07" @default.
- W2266804559 modified "2023-09-27" @default.
- W2266804559 title "Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations" @default.
- W2266804559 cites W104184427 @default.
- W2266804559 cites W1498436455 @default.
- W2266804559 cites W1523385540 @default.
- W2266804559 cites W1531883353 @default.
- W2266804559 cites W1883346539 @default.
- W2266804559 cites W1949478088 @default.
- W2266804559 cites W1988720110 @default.
- W2266804559 cites W2002955882 @default.
- W2266804559 cites W2050583479 @default.
- W2266804559 cites W2051669046 @default.
- W2266804559 cites W2062955551 @default.
- W2266804559 cites W2063036810 @default.
- W2266804559 cites W2063588877 @default.
- W2266804559 cites W2091825929 @default.
- W2266804559 cites W2100235303 @default.
- W2266804559 cites W2105582566 @default.
- W2266804559 cites W2108502868 @default.
- W2266804559 cites W2112796928 @default.
- W2266804559 cites W2113651538 @default.
- W2266804559 cites W2120420045 @default.
- W2266804559 cites W2124101779 @default.
- W2266804559 cites W2125972593 @default.
- W2266804559 cites W2134130436 @default.
- W2266804559 cites W2140406733 @default.
- W2266804559 cites W2168231600 @default.
- W2266804559 cites W2250539671 @default.
- W2266804559 cites W2295584157 @default.
- W2266804559 cites W2333315597 @default.
- W2266804559 cites W2949967295 @default.
- W2266804559 cites W2950516383 @default.
- W2266804559 cites W2950682695 @default.
- W2266804559 cites W2951135829 @default.
- W2266804559 cites W2952722663 @default.
- W2266804559 cites W2953310052 @default.
- W2266804559 cites W2963781962 @default.
- W2266804559 cites W2963867975 @default.
- W2266804559 cites W3028642772 @default.
- W2266804559 cites W342285082 @default.
- W2266804559 cites W68733909 @default.
- W2266804559 doi "https://doi.org/10.48550/arxiv.1510.02054" @default.
- W2266804559 hasPublicationYear "2015" @default.
- W2266804559 type Work @default.
- W2266804559 sameAs 2266804559 @default.
- W2266804559 citedByCount "12" @default.
- W2266804559 countsByYear W22668045592015 @default.
- W2266804559 countsByYear W22668045592016 @default.
- W2266804559 countsByYear W22668045592017 @default.
- W2266804559 countsByYear W22668045592018 @default.
- W2266804559 countsByYear W22668045592020 @default.
- W2266804559 crossrefType "posted-content" @default.
- W2266804559 hasAuthorship W2266804559A5005239198 @default.
- W2266804559 hasAuthorship W2266804559A5015602781 @default.
- W2266804559 hasAuthorship W2266804559A5063457506 @default.
- W2266804559 hasAuthorship W2266804559A5070613374 @default.
- W2266804559 hasBestOaLocation W22668045591 @default.
- W2266804559 hasConcept C108583219 @default.
- W2266804559 hasConcept C11413529 @default.
- W2266804559 hasConcept C119857082 @default.
- W2266804559 hasConcept C121332964 @default.
- W2266804559 hasConcept C126255220 @default.
- W2266804559 hasConcept C137836250 @default.
- W2266804559 hasConcept C153874254 @default.
- W2266804559 hasConcept C154945302 @default.
- W2266804559 hasConcept C158622935 @default.
- W2266804559 hasConcept C17744445 @default.
- W2266804559 hasConcept C194387892 @default.
- W2266804559 hasConcept C199360897 @default.
- W2266804559 hasConcept C199539241 @default.
- W2266804559 hasConcept C2776359362 @default.
- W2266804559 hasConcept C2778029271 @default.
- W2266804559 hasConcept C33923547 @default.
- W2266804559 hasConcept C41008148 @default.
- W2266804559 hasConcept C50644808 @default.
- W2266804559 hasConcept C62520636 @default.
- W2266804559 hasConcept C94625758 @default.
- W2266804559 hasConceptScore W2266804559C108583219 @default.
- W2266804559 hasConceptScore W2266804559C11413529 @default.
- W2266804559 hasConceptScore W2266804559C119857082 @default.
- W2266804559 hasConceptScore W2266804559C121332964 @default.
- W2266804559 hasConceptScore W2266804559C126255220 @default.
- W2266804559 hasConceptScore W2266804559C137836250 @default.
- W2266804559 hasConceptScore W2266804559C153874254 @default.
- W2266804559 hasConceptScore W2266804559C154945302 @default.
- W2266804559 hasConceptScore W2266804559C158622935 @default.
- W2266804559 hasConceptScore W2266804559C17744445 @default.
- W2266804559 hasConceptScore W2266804559C194387892 @default.
- W2266804559 hasConceptScore W2266804559C199360897 @default.
- W2266804559 hasConceptScore W2266804559C199539241 @default.
- W2266804559 hasConceptScore W2266804559C2776359362 @default.
- W2266804559 hasConceptScore W2266804559C2778029271 @default.
- W2266804559 hasConceptScore W2266804559C33923547 @default.