Matches in SemOpenAlex for { <https://semopenalex.org/work/W2267203088> ?p ?o ?g. }
- W2267203088 endingPage "9183" @default.
- W2267203088 startingPage "9157" @default.
- W2267203088 abstract "Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes.Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64 ± 6.5%, 3.63 ± 0.83%, 1.31% ± 0.09%, 0.86% ± 0.11% and 0.52 % ± 0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms.The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time." @default.
- W2267203088 created "2016-06-24" @default.
- W2267203088 creator A5016678383 @default.
- W2267203088 creator A5038454329 @default.
- W2267203088 creator A5044220823 @default.
- W2267203088 creator A5049341927 @default.
- W2267203088 creator A5058530714 @default.
- W2267203088 creator A5067975442 @default.
- W2267203088 creator A5074004018 @default.
- W2267203088 date "2015-11-12" @default.
- W2267203088 modified "2023-10-18" @default.
- W2267203088 title "Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography" @default.
- W2267203088 cites W1966010349 @default.
- W2267203088 cites W1967033548 @default.
- W2267203088 cites W1967362034 @default.
- W2267203088 cites W1975849747 @default.
- W2267203088 cites W1977179784 @default.
- W2267203088 cites W1979345254 @default.
- W2267203088 cites W1980020889 @default.
- W2267203088 cites W1981095046 @default.
- W2267203088 cites W1981573022 @default.
- W2267203088 cites W1983361017 @default.
- W2267203088 cites W1998262527 @default.
- W2267203088 cites W1999440262 @default.
- W2267203088 cites W2006366199 @default.
- W2267203088 cites W2011315295 @default.
- W2267203088 cites W2012073793 @default.
- W2267203088 cites W2018876455 @default.
- W2267203088 cites W2037127217 @default.
- W2267203088 cites W2038091743 @default.
- W2267203088 cites W2042430763 @default.
- W2267203088 cites W2042547280 @default.
- W2267203088 cites W2044592134 @default.
- W2267203088 cites W2046920331 @default.
- W2267203088 cites W2049394478 @default.
- W2267203088 cites W2049641710 @default.
- W2267203088 cites W2049691758 @default.
- W2267203088 cites W2055302232 @default.
- W2267203088 cites W2055777557 @default.
- W2267203088 cites W2060457877 @default.
- W2267203088 cites W2063019627 @default.
- W2267203088 cites W2069212995 @default.
- W2267203088 cites W2072611447 @default.
- W2267203088 cites W2076605490 @default.
- W2267203088 cites W2081314646 @default.
- W2267203088 cites W2084664425 @default.
- W2267203088 cites W2091145475 @default.
- W2267203088 cites W2095024285 @default.
- W2267203088 cites W2099526103 @default.
- W2267203088 cites W2109081782 @default.
- W2267203088 cites W2109449402 @default.
- W2267203088 cites W2112095335 @default.
- W2267203088 cites W2115934486 @default.
- W2267203088 cites W2117250174 @default.
- W2267203088 cites W2124005644 @default.
- W2267203088 cites W2131867082 @default.
- W2267203088 cites W2139875391 @default.
- W2267203088 cites W2145122414 @default.
- W2267203088 cites W2146655312 @default.
- W2267203088 cites W2149400409 @default.
- W2267203088 cites W2153549888 @default.
- W2267203088 cites W2157812230 @default.
- W2267203088 cites W2162037713 @default.
- W2267203088 doi "https://doi.org/10.1088/0031-9155/60/23/9157" @default.
- W2267203088 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26562284" @default.
- W2267203088 hasPublicationYear "2015" @default.
- W2267203088 type Work @default.
- W2267203088 sameAs 2267203088 @default.
- W2267203088 citedByCount "5" @default.
- W2267203088 countsByYear W22672030882016 @default.
- W2267203088 countsByYear W22672030882017 @default.
- W2267203088 countsByYear W22672030882018 @default.
- W2267203088 countsByYear W22672030882020 @default.
- W2267203088 crossrefType "journal-article" @default.
- W2267203088 hasAuthorship W2267203088A5016678383 @default.
- W2267203088 hasAuthorship W2267203088A5038454329 @default.
- W2267203088 hasAuthorship W2267203088A5044220823 @default.
- W2267203088 hasAuthorship W2267203088A5049341927 @default.
- W2267203088 hasAuthorship W2267203088A5058530714 @default.
- W2267203088 hasAuthorship W2267203088A5067975442 @default.
- W2267203088 hasAuthorship W2267203088A5074004018 @default.
- W2267203088 hasConcept C11413529 @default.
- W2267203088 hasConcept C115961682 @default.
- W2267203088 hasConcept C121332964 @default.
- W2267203088 hasConcept C126838900 @default.
- W2267203088 hasConcept C141379421 @default.
- W2267203088 hasConcept C154945302 @default.
- W2267203088 hasConcept C20556612 @default.
- W2267203088 hasConcept C2779010991 @default.
- W2267203088 hasConcept C2779813781 @default.
- W2267203088 hasConcept C31972630 @default.
- W2267203088 hasConcept C41008148 @default.
- W2267203088 hasConcept C44280652 @default.
- W2267203088 hasConcept C544519230 @default.
- W2267203088 hasConcept C55020928 @default.
- W2267203088 hasConcept C57493831 @default.
- W2267203088 hasConcept C62520636 @default.
- W2267203088 hasConcept C71924100 @default.