Matches in SemOpenAlex for { <https://semopenalex.org/work/W2267568327> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2267568327 abstract "Classification of gene expression data is the common denominator of various biomedical recognition tasks. However, obtaining class labels for large training samples may be difficult or even impossible in many cases. Therefore, semi-supervised classification techniques are required as semi-supervised classifiers take advantage of unlabeled data.Gene expression data is high-dimensional which gives rise to the phenomena known under the umbrella of the curse of dimensionality, one of its recently explored aspects being the presence of hubs or hubness for short. Therefore, hubness-aware classifiers have been developed recently, such as Naive Hubness-Bayesian k-Nearest Neighbor (NHBNN). In this paper, we propose a semi-supervised extension of NHBNN which follows the self-training schema. As one of the core components of self-training is the certainty score, we propose a new hubness-aware certainty score.We performed experiments on publicly available gene expression data. These experiments show that the proposed classifier outperforms its competitors. We investigated the impact of each of the components (classification algorithm, semi-supervised technique, hubness-aware certainty score) separately and showed that each of these components are relevant to the performance of the proposed approach.Our results imply that our approach may increase classification accuracy and reduce computational costs (i.e., runtime). Based on the promising results presented in the paper, we envision that hubness-aware techniques will be used in various other biomedical machine learning tasks. In order to accelerate this process, we made an implementation of hubness-aware machine learning techniques publicly available in the PyHubs software package (http://www.biointelligence.hu/pyhubs) implemented in Python, one of the most popular programming languages of data science." @default.
- W2267568327 created "2016-06-24" @default.
- W2267568327 creator A5032448573 @default.
- W2267568327 date "2016-04-01" @default.
- W2267568327 modified "2023-10-08" @default.
- W2267568327 title "Classification of gene expression data: A hubness-aware semi-supervised approach" @default.
- W2267568327 cites W1976304167 @default.
- W2267568327 cites W1999463736 @default.
- W2267568327 cites W2030410423 @default.
- W2267568327 cites W2087684630 @default.
- W2267568327 cites W2097413644 @default.
- W2267568327 cites W2112865076 @default.
- W2267568327 cites W2126671570 @default.
- W2267568327 cites W2154706222 @default.
- W2267568327 doi "https://doi.org/10.1016/j.cmpb.2016.01.016" @default.
- W2267568327 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27000293" @default.
- W2267568327 hasPublicationYear "2016" @default.
- W2267568327 type Work @default.
- W2267568327 sameAs 2267568327 @default.
- W2267568327 citedByCount "15" @default.
- W2267568327 countsByYear W22675683272016 @default.
- W2267568327 countsByYear W22675683272017 @default.
- W2267568327 countsByYear W22675683272019 @default.
- W2267568327 countsByYear W22675683272020 @default.
- W2267568327 countsByYear W22675683272021 @default.
- W2267568327 countsByYear W22675683272022 @default.
- W2267568327 crossrefType "journal-article" @default.
- W2267568327 hasAuthorship W2267568327A5032448573 @default.
- W2267568327 hasBestOaLocation W22675683272 @default.
- W2267568327 hasConcept C111030470 @default.
- W2267568327 hasConcept C119857082 @default.
- W2267568327 hasConcept C12267149 @default.
- W2267568327 hasConcept C124101348 @default.
- W2267568327 hasConcept C153180895 @default.
- W2267568327 hasConcept C154945302 @default.
- W2267568327 hasConcept C41008148 @default.
- W2267568327 hasConcept C52001869 @default.
- W2267568327 hasConcept C52146309 @default.
- W2267568327 hasConcept C95623464 @default.
- W2267568327 hasConceptScore W2267568327C111030470 @default.
- W2267568327 hasConceptScore W2267568327C119857082 @default.
- W2267568327 hasConceptScore W2267568327C12267149 @default.
- W2267568327 hasConceptScore W2267568327C124101348 @default.
- W2267568327 hasConceptScore W2267568327C153180895 @default.
- W2267568327 hasConceptScore W2267568327C154945302 @default.
- W2267568327 hasConceptScore W2267568327C41008148 @default.
- W2267568327 hasConceptScore W2267568327C52001869 @default.
- W2267568327 hasConceptScore W2267568327C52146309 @default.
- W2267568327 hasConceptScore W2267568327C95623464 @default.
- W2267568327 hasFunder F4320321994 @default.
- W2267568327 hasLocation W22675683271 @default.
- W2267568327 hasLocation W22675683272 @default.
- W2267568327 hasLocation W22675683273 @default.
- W2267568327 hasOpenAccess W2267568327 @default.
- W2267568327 hasPrimaryLocation W22675683271 @default.
- W2267568327 hasRelatedWork W1470425429 @default.
- W2267568327 hasRelatedWork W2525032316 @default.
- W2267568327 hasRelatedWork W2553238562 @default.
- W2267568327 hasRelatedWork W2623427976 @default.
- W2267568327 hasRelatedWork W2961085424 @default.
- W2267568327 hasRelatedWork W3201534795 @default.
- W2267568327 hasRelatedWork W4205958290 @default.
- W2267568327 hasRelatedWork W4280611221 @default.
- W2267568327 hasRelatedWork W4283016678 @default.
- W2267568327 hasRelatedWork W4224009465 @default.
- W2267568327 isParatext "false" @default.
- W2267568327 isRetracted "false" @default.
- W2267568327 magId "2267568327" @default.
- W2267568327 workType "article" @default.