Matches in SemOpenAlex for { <https://semopenalex.org/work/W2267926621> ?p ?o ?g. }
- W2267926621 endingPage "1594" @default.
- W2267926621 startingPage "1584" @default.
- W2267926621 abstract "In many natural and anthropogenically affected environments, alteration of galena produces thermodynamically more stable secondary lead phases. These secondary minerals control the mobility of the toxic heavy metal lead in water. These textural, paragenetic, and stability relations have not been investigated in detail in the literature yet. An extensive petrographic study of 41 thin sections of weathered, zoned galena and adjacent country rock from the Schwarzwald mining area, southwest Germany, is presented. The observed textures were evaluated using PHREEQC fluid path modeling and sequences of stable secondary mineral assemblages were predicted. The most common secondary (supergene) lead minerals of interest here are cerussite, anglesite, and pyromorphite group minerals (PyGM; pyromorphite, mimetite, and vanadinite). These lead phases show a spatially well-ordered zoned texture around the preexisting/relic galena. Cerussite and anglesite commonly occur either as in situ replacement of galena and/or as euhedral crystals in cavities of former, partially dissolved galena. The PyGM are present either as crusts around the margin of the former/relic galena or are common as infiltration products into the host rock/gangue. During progressive weathering anglesite typically disappears first followed by cerussite. Finally, only the highly insoluble PyGM persist as a perimorphose. Hence, a spatially and temporally zoning texture is formed. Thermodynamic models of various fluid evolution paths using PHREEQC show the influence of temperature, pH, variable P CO2 , phosphorous contents and/or different mineral reactions on the sequence of formation and stability of the secondary lead phases. Already small changes in one or more of these parameters can lead to different mineral assemblages or sequences of secondary lead minerals. Over almost the whole relevant pH range, PyGM are the most stable lead phases, precipitating at very low ion activities explaining their textural position. Whether cerussite or anglesite forms, depends mainly on the pH value of the supergene fluids, which is affected by the quite variable fluid pathways. Furthermore a solubility diagram for a typical near-surface fluid was calculated, showing that anglesite is the most soluble phase, followed by cerussite and PyGM. This again reflects the microscopic observations. As a further step, the time span for the formation of a natural millimeter-thick pyromorphite crust was evaluated using subsoil phosphorous fluxes from the literature. The calculation indicates that millimeter-thick pyromorphite crusts can be formed in few tens to about hundred years, which is in agreement with observations in the nature. In this study, a framework for predicting stable secondary lead mineral assemblages and textures by fluid path modeling is given. These models are potentially important for predicting the retention and mobilization of lead in systems around contaminated sites or natural ore deposits." @default.
- W2267926621 created "2016-06-24" @default.
- W2267926621 creator A5057276671 @default.
- W2267926621 creator A5080624199 @default.
- W2267926621 date "2015-07-01" @default.
- W2267926621 modified "2023-10-14" @default.
- W2267926621 title "Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite" @default.
- W2267926621 cites W1488282249 @default.
- W2267926621 cites W1521884949 @default.
- W2267926621 cites W1604035276 @default.
- W2267926621 cites W1969709149 @default.
- W2267926621 cites W1970952444 @default.
- W2267926621 cites W1981945413 @default.
- W2267926621 cites W1992821994 @default.
- W2267926621 cites W1998752282 @default.
- W2267926621 cites W2003535777 @default.
- W2267926621 cites W2005241002 @default.
- W2267926621 cites W2007099030 @default.
- W2267926621 cites W2009923793 @default.
- W2267926621 cites W2018406520 @default.
- W2267926621 cites W2031390782 @default.
- W2267926621 cites W2036027354 @default.
- W2267926621 cites W2036060540 @default.
- W2267926621 cites W2040135180 @default.
- W2267926621 cites W2042275090 @default.
- W2267926621 cites W2042300120 @default.
- W2267926621 cites W2051730087 @default.
- W2267926621 cites W2057965787 @default.
- W2267926621 cites W2064108379 @default.
- W2267926621 cites W2073875289 @default.
- W2267926621 cites W2078741827 @default.
- W2267926621 cites W2080045572 @default.
- W2267926621 cites W2087207846 @default.
- W2267926621 cites W2089218929 @default.
- W2267926621 cites W2090526970 @default.
- W2267926621 cites W2111473359 @default.
- W2267926621 cites W2116270267 @default.
- W2267926621 cites W2156295964 @default.
- W2267926621 cites W2169512408 @default.
- W2267926621 cites W2171846383 @default.
- W2267926621 cites W2233991127 @default.
- W2267926621 cites W2314548661 @default.
- W2267926621 cites W2314637322 @default.
- W2267926621 cites W2324316123 @default.
- W2267926621 cites W2332693241 @default.
- W2267926621 cites W2601424915 @default.
- W2267926621 cites W2952307904 @default.
- W2267926621 cites W3083788475 @default.
- W2267926621 cites W583366362 @default.
- W2267926621 cites W605314156 @default.
- W2267926621 cites W61186837 @default.
- W2267926621 doi "https://doi.org/10.2138/am-2015-5183" @default.
- W2267926621 hasPublicationYear "2015" @default.
- W2267926621 type Work @default.
- W2267926621 sameAs 2267926621 @default.
- W2267926621 citedByCount "33" @default.
- W2267926621 countsByYear W22679266212016 @default.
- W2267926621 countsByYear W22679266212017 @default.
- W2267926621 countsByYear W22679266212018 @default.
- W2267926621 countsByYear W22679266212019 @default.
- W2267926621 countsByYear W22679266212020 @default.
- W2267926621 countsByYear W22679266212021 @default.
- W2267926621 countsByYear W22679266212022 @default.
- W2267926621 countsByYear W22679266212023 @default.
- W2267926621 crossrefType "journal-article" @default.
- W2267926621 hasAuthorship W2267926621A5057276671 @default.
- W2267926621 hasAuthorship W2267926621A5080624199 @default.
- W2267926621 hasConcept C127313418 @default.
- W2267926621 hasConcept C127413603 @default.
- W2267926621 hasConcept C17409809 @default.
- W2267926621 hasConcept C199289684 @default.
- W2267926621 hasConcept C199360897 @default.
- W2267926621 hasConcept C201995342 @default.
- W2267926621 hasConcept C2776062231 @default.
- W2267926621 hasConcept C2776268066 @default.
- W2267926621 hasConcept C2777735758 @default.
- W2267926621 hasConcept C2781139676 @default.
- W2267926621 hasConcept C40724407 @default.
- W2267926621 hasConcept C41008148 @default.
- W2267926621 hasConcept C96250715 @default.
- W2267926621 hasConceptScore W2267926621C127313418 @default.
- W2267926621 hasConceptScore W2267926621C127413603 @default.
- W2267926621 hasConceptScore W2267926621C17409809 @default.
- W2267926621 hasConceptScore W2267926621C199289684 @default.
- W2267926621 hasConceptScore W2267926621C199360897 @default.
- W2267926621 hasConceptScore W2267926621C201995342 @default.
- W2267926621 hasConceptScore W2267926621C2776062231 @default.
- W2267926621 hasConceptScore W2267926621C2776268066 @default.
- W2267926621 hasConceptScore W2267926621C2777735758 @default.
- W2267926621 hasConceptScore W2267926621C2781139676 @default.
- W2267926621 hasConceptScore W2267926621C40724407 @default.
- W2267926621 hasConceptScore W2267926621C41008148 @default.
- W2267926621 hasConceptScore W2267926621C96250715 @default.
- W2267926621 hasIssue "7" @default.
- W2267926621 hasLocation W22679266211 @default.
- W2267926621 hasOpenAccess W2267926621 @default.
- W2267926621 hasPrimaryLocation W22679266211 @default.
- W2267926621 hasRelatedWork W1974352172 @default.