Matches in SemOpenAlex for { <https://semopenalex.org/work/W2267931192> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2267931192 endingPage "439" @default.
- W2267931192 startingPage "431" @default.
- W2267931192 abstract "The thermoacoustic heat engine (TAHE) is a type of prime mover that converts thermal power to acoustic power. It is composed of two heat exchangers (the devices heat source and sink), some kind of porous medium where the conversion of power takes place and a tube that houses the acoustic wave produced. Its simple design and the fact that it is one of a few prime movers that do not require moving parts make such a device an attractive alternative for many practical applications. The acoustic power produced by the TAHE can be used to generate electricity, drive a heat pump or a refrigeration system. Although the geometry of the TAHE is simple, the behavior of the engine is complex with 30+ design parameters that affect the performance of the device; therefore, designing such a device remains a significant challenge. In this work, a radical design methodology using reinforcement learning (RL) is employed for the design and optimization of a TAHE for the first time. Reinforcement learning is a machine learning technique that allows optimization by specifying ‘good’ and ‘bad’ behavior using a simple reward scheme r. Although its framework is simple, it has proved to be a very powerful tool in solving a wide range of complex decision-making/optimization problems. The RL technique employed by the agent in this work is known as Q-learning. Preliminary results have shown the potential of the RL technique to solve this type of complex design problem, as the RL agent was able to figure out the correct configuration of components that would create positive acoustic power output. The learning agent was able to create a design that yielded an acoustic power output of 643.31 W with a thermal efficiency of 3.29%. It is eventually hoped that with increased understanding of the design problem, in terms of the RL framework, it will be possible to ultimately create an autonomous RL agent for the design and optimization of complex TAHEs with minimal predefined conditions/restrictions." @default.
- W2267931192 created "2016-06-24" @default.
- W2267931192 creator A5013757942 @default.
- W2267931192 creator A5019468964 @default.
- W2267931192 creator A5079027302 @default.
- W2267931192 date "2015-08-16" @default.
- W2267931192 modified "2023-09-25" @default.
- W2267931192 title "Design and optimization of a thermoacoustic heat engine using reinforcement learning" @default.
- W2267931192 cites W1625397937 @default.
- W2267931192 cites W1825869920 @default.
- W2267931192 cites W1971960143 @default.
- W2267931192 cites W1987372565 @default.
- W2267931192 cites W1995137168 @default.
- W2267931192 cites W1997389770 @default.
- W2267931192 cites W2004396140 @default.
- W2267931192 cites W2006231971 @default.
- W2267931192 cites W2016177260 @default.
- W2267931192 cites W2026058477 @default.
- W2267931192 cites W2029979307 @default.
- W2267931192 cites W2039605613 @default.
- W2267931192 cites W2044756702 @default.
- W2267931192 cites W2077174570 @default.
- W2267931192 cites W2137509429 @default.
- W2267931192 cites W2146632007 @default.
- W2267931192 cites W2327790256 @default.
- W2267931192 cites W4229981221 @default.
- W2267931192 cites W4240117034 @default.
- W2267931192 doi "https://doi.org/10.1093/ijlct/ctv023" @default.
- W2267931192 hasPublicationYear "2015" @default.
- W2267931192 type Work @default.
- W2267931192 sameAs 2267931192 @default.
- W2267931192 citedByCount "6" @default.
- W2267931192 countsByYear W22679311922019 @default.
- W2267931192 countsByYear W22679311922020 @default.
- W2267931192 countsByYear W22679311922021 @default.
- W2267931192 countsByYear W22679311922022 @default.
- W2267931192 crossrefType "journal-article" @default.
- W2267931192 hasAuthorship W2267931192A5013757942 @default.
- W2267931192 hasAuthorship W2267931192A5019468964 @default.
- W2267931192 hasAuthorship W2267931192A5079027302 @default.
- W2267931192 hasBestOaLocation W22679311921 @default.
- W2267931192 hasConcept C107706546 @default.
- W2267931192 hasConcept C127413603 @default.
- W2267931192 hasConcept C153875185 @default.
- W2267931192 hasConcept C154945302 @default.
- W2267931192 hasConcept C186937647 @default.
- W2267931192 hasConcept C41008148 @default.
- W2267931192 hasConcept C69907114 @default.
- W2267931192 hasConcept C78519656 @default.
- W2267931192 hasConcept C97541855 @default.
- W2267931192 hasConceptScore W2267931192C107706546 @default.
- W2267931192 hasConceptScore W2267931192C127413603 @default.
- W2267931192 hasConceptScore W2267931192C153875185 @default.
- W2267931192 hasConceptScore W2267931192C154945302 @default.
- W2267931192 hasConceptScore W2267931192C186937647 @default.
- W2267931192 hasConceptScore W2267931192C41008148 @default.
- W2267931192 hasConceptScore W2267931192C69907114 @default.
- W2267931192 hasConceptScore W2267931192C78519656 @default.
- W2267931192 hasConceptScore W2267931192C97541855 @default.
- W2267931192 hasIssue "3" @default.
- W2267931192 hasLocation W22679311921 @default.
- W2267931192 hasLocation W22679311922 @default.
- W2267931192 hasLocation W22679311923 @default.
- W2267931192 hasLocation W22679311924 @default.
- W2267931192 hasOpenAccess W2267931192 @default.
- W2267931192 hasPrimaryLocation W22679311921 @default.
- W2267931192 hasRelatedWork W2012167545 @default.
- W2267931192 hasRelatedWork W260766989 @default.
- W2267931192 hasRelatedWork W2959276766 @default.
- W2267931192 hasRelatedWork W3037422413 @default.
- W2267931192 hasRelatedWork W3111983280 @default.
- W2267931192 hasRelatedWork W3139193008 @default.
- W2267931192 hasRelatedWork W3164468573 @default.
- W2267931192 hasRelatedWork W4206669594 @default.
- W2267931192 hasRelatedWork W4295941380 @default.
- W2267931192 hasRelatedWork W75638311 @default.
- W2267931192 hasVolume "11" @default.
- W2267931192 isParatext "false" @default.
- W2267931192 isRetracted "false" @default.
- W2267931192 magId "2267931192" @default.
- W2267931192 workType "article" @default.