Matches in SemOpenAlex for { <https://semopenalex.org/work/W2269066442> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2269066442 endingPage "15" @default.
- W2269066442 startingPage "15" @default.
- W2269066442 abstract "The development of security systems based on biometric features has been a topic of active research during the last three decades, because the recognition of the people identity to access control is a fundamental issue in these days. Terrorist attacks happened during the last decade have demonstrated that it is indispensable to have reliable security systems in offices, banks, airports, etc.; increasing in such way the necessity to develop more reliable methods for people recognition. The biometrics systems consist of a group of automated methods for recognition or verification of people identity using the physical characteristics or personal behavior of the person under analysis. In particular the face recognition has been a topic of active research because the face is the most direct way to recognize the people. In addition, the data acquisition of this method consists, simply, of taking a picture with or without collaboration of the person under analysis, doing it one of the biometric methods with larger acceptance among the users.The face recognition is a very complex activity of the human brain. For example, we can recognize hundred of faces learned throughout our life and to identify familiar faces at the first sight, even after several years of separation, with relative easy. However it is not a simple task for a computer. Thus to develop high performance face recognition systems, we must to develop accurate feature extraction and classification methods, because, as happens with any pattern recognition algorithm, the performance of a face recognition algorithm strongly depends on the feature extraction method and the classification systems used to carry out the face recognition task. Thus during the last decades several feature extraction methods for using in face recognition systems have been proposed during the last decades, which achieve high accurate recognition. Among the situations that drastically decrease the accuracy and that must be considered to develop high performance face recognition method we have: partial occlusion, illumination variations, size change, rotation and translation of the capture image, etc. To solve these problems several efficient feature extraction methods have been proposed, several of them using frequency domain transforms such as discrete Gabor transform, discrete Fourier transform, Discrete cosine transform, etc. These methods achieve recognition rates higher than 90%.In this talk, we analyze several frequency domain feature extraction methods based on the Discrete Gabor transform, Discrete Fourier Transform, Discrete Wavelet Transform, Discrete Cosine Transform, Discrete Walsh-Hadamard Transform and Eigenphases. These feature extraction methods are used with different classifiers such as artificial neural networks (ANN), Gaussian Mixture Models (GMM) and Support vector machines (SVM). The evaluation results were obtained using well known public domain databases such as AR Face Database." @default.
- W2269066442 created "2016-06-24" @default.
- W2269066442 creator A5068877119 @default.
- W2269066442 date "2010-10-04" @default.
- W2269066442 modified "2023-09-24" @default.
- W2269066442 title "Plenary lecture 1: face recognition using frequency domain feature extraction methods" @default.
- W2269066442 hasPublicationYear "2010" @default.
- W2269066442 type Work @default.
- W2269066442 sameAs 2269066442 @default.
- W2269066442 citedByCount "0" @default.
- W2269066442 crossrefType "journal-article" @default.
- W2269066442 hasAuthorship W2269066442A5068877119 @default.
- W2269066442 hasConcept C107457646 @default.
- W2269066442 hasConcept C119857082 @default.
- W2269066442 hasConcept C121332964 @default.
- W2269066442 hasConcept C127413603 @default.
- W2269066442 hasConcept C138885662 @default.
- W2269066442 hasConcept C144024400 @default.
- W2269066442 hasConcept C153180895 @default.
- W2269066442 hasConcept C154945302 @default.
- W2269066442 hasConcept C184297639 @default.
- W2269066442 hasConcept C201995342 @default.
- W2269066442 hasConcept C24890656 @default.
- W2269066442 hasConcept C2776401178 @default.
- W2269066442 hasConcept C2778355321 @default.
- W2269066442 hasConcept C2779304628 @default.
- W2269066442 hasConcept C2780451532 @default.
- W2269066442 hasConcept C31510193 @default.
- W2269066442 hasConcept C36289849 @default.
- W2269066442 hasConcept C38652104 @default.
- W2269066442 hasConcept C41008148 @default.
- W2269066442 hasConcept C41895202 @default.
- W2269066442 hasConcept C4641261 @default.
- W2269066442 hasConcept C52622490 @default.
- W2269066442 hasConcept C527821871 @default.
- W2269066442 hasConcept C88799230 @default.
- W2269066442 hasConceptScore W2269066442C107457646 @default.
- W2269066442 hasConceptScore W2269066442C119857082 @default.
- W2269066442 hasConceptScore W2269066442C121332964 @default.
- W2269066442 hasConceptScore W2269066442C127413603 @default.
- W2269066442 hasConceptScore W2269066442C138885662 @default.
- W2269066442 hasConceptScore W2269066442C144024400 @default.
- W2269066442 hasConceptScore W2269066442C153180895 @default.
- W2269066442 hasConceptScore W2269066442C154945302 @default.
- W2269066442 hasConceptScore W2269066442C184297639 @default.
- W2269066442 hasConceptScore W2269066442C201995342 @default.
- W2269066442 hasConceptScore W2269066442C24890656 @default.
- W2269066442 hasConceptScore W2269066442C2776401178 @default.
- W2269066442 hasConceptScore W2269066442C2778355321 @default.
- W2269066442 hasConceptScore W2269066442C2779304628 @default.
- W2269066442 hasConceptScore W2269066442C2780451532 @default.
- W2269066442 hasConceptScore W2269066442C31510193 @default.
- W2269066442 hasConceptScore W2269066442C36289849 @default.
- W2269066442 hasConceptScore W2269066442C38652104 @default.
- W2269066442 hasConceptScore W2269066442C41008148 @default.
- W2269066442 hasConceptScore W2269066442C41895202 @default.
- W2269066442 hasConceptScore W2269066442C4641261 @default.
- W2269066442 hasConceptScore W2269066442C52622490 @default.
- W2269066442 hasConceptScore W2269066442C527821871 @default.
- W2269066442 hasConceptScore W2269066442C88799230 @default.
- W2269066442 hasLocation W22690664421 @default.
- W2269066442 hasOpenAccess W2269066442 @default.
- W2269066442 hasPrimaryLocation W22690664421 @default.
- W2269066442 hasRelatedWork W1012821030 @default.
- W2269066442 hasRelatedWork W108804543 @default.
- W2269066442 hasRelatedWork W111223712 @default.
- W2269066442 hasRelatedWork W139994225 @default.
- W2269066442 hasRelatedWork W1607065485 @default.
- W2269066442 hasRelatedWork W2025917058 @default.
- W2269066442 hasRelatedWork W2046645564 @default.
- W2269066442 hasRelatedWork W2053406260 @default.
- W2269066442 hasRelatedWork W2181541747 @default.
- W2269066442 hasRelatedWork W2183898725 @default.
- W2269066442 hasRelatedWork W2185921194 @default.
- W2269066442 hasRelatedWork W2331877424 @default.
- W2269066442 hasRelatedWork W2417295848 @default.
- W2269066442 hasRelatedWork W2560273078 @default.
- W2269066442 hasRelatedWork W2566572354 @default.
- W2269066442 hasRelatedWork W2784101006 @default.
- W2269066442 hasRelatedWork W2787371709 @default.
- W2269066442 hasRelatedWork W2787652200 @default.
- W2269066442 hasRelatedWork W2978354231 @default.
- W2269066442 hasRelatedWork W3020860390 @default.
- W2269066442 isParatext "false" @default.
- W2269066442 isRetracted "false" @default.
- W2269066442 magId "2269066442" @default.
- W2269066442 workType "article" @default.