Matches in SemOpenAlex for { <https://semopenalex.org/work/W2269936632> ?p ?o ?g. }
- W2269936632 abstract "Face recognition (FR) via regression analysis based classification has been widely applied in the past several years. In the existing regression methods, the testing image is represented as a linear combination of the training samples and the error image is converted into vector which is characterized by l1-norm or l2-norm. Therefore the two-dimensional structure of the error image is neglected in practice. In this paper, we operate on the two-dimensional image matrix directly, and propose a new face recognition method, namely Robust Matrix Regression (RMR). We perform the minimal weighted nuclear norm constraint on the representation error image as criterion to make full use of the low rank structural information. The proposed model is efficiently solved by an alternating direction method of multipliers (ADMM) and experimental results on public face databases demonstrate the effectiveness of our model in dealing with variations of occlusion and illumination." @default.
- W2269936632 created "2016-06-24" @default.
- W2269936632 creator A5029021362 @default.
- W2269936632 creator A5040166376 @default.
- W2269936632 creator A5062318228 @default.
- W2269936632 creator A5064363522 @default.
- W2269936632 date "2015-12-01" @default.
- W2269936632 modified "2023-09-25" @default.
- W2269936632 title "Robust Matrix Regression for Illumination and Occlusion Tolerant Face Recognition" @default.
- W2269936632 cites W1510982829 @default.
- W2269936632 cites W1591385104 @default.
- W2269936632 cites W1600550542 @default.
- W2269936632 cites W1736339626 @default.
- W2269936632 cites W1916337001 @default.
- W2269936632 cites W1966096622 @default.
- W2269936632 cites W1976503215 @default.
- W2269936632 cites W1989702938 @default.
- W2269936632 cites W1990319151 @default.
- W2269936632 cites W2004544971 @default.
- W2269936632 cites W2014697905 @default.
- W2269936632 cites W2048695508 @default.
- W2269936632 cites W2050849575 @default.
- W2269936632 cites W2075547019 @default.
- W2269936632 cites W2085400714 @default.
- W2269936632 cites W2097486709 @default.
- W2269936632 cites W2108840547 @default.
- W2269936632 cites W2125874614 @default.
- W2269936632 cites W2129812935 @default.
- W2269936632 cites W2132467081 @default.
- W2269936632 cites W2137823674 @default.
- W2269936632 cites W2149414429 @default.
- W2269936632 cites W2994340921 @default.
- W2269936632 doi "https://doi.org/10.1109/iccvw.2015.118" @default.
- W2269936632 hasPublicationYear "2015" @default.
- W2269936632 type Work @default.
- W2269936632 sameAs 2269936632 @default.
- W2269936632 citedByCount "1" @default.
- W2269936632 countsByYear W22699366322017 @default.
- W2269936632 crossrefType "proceedings-article" @default.
- W2269936632 hasAuthorship W2269936632A5029021362 @default.
- W2269936632 hasAuthorship W2269936632A5040166376 @default.
- W2269936632 hasAuthorship W2269936632A5062318228 @default.
- W2269936632 hasAuthorship W2269936632A5064363522 @default.
- W2269936632 hasConcept C105795698 @default.
- W2269936632 hasConcept C114614502 @default.
- W2269936632 hasConcept C115961682 @default.
- W2269936632 hasConcept C121332964 @default.
- W2269936632 hasConcept C144024400 @default.
- W2269936632 hasConcept C153180895 @default.
- W2269936632 hasConcept C154945302 @default.
- W2269936632 hasConcept C158693339 @default.
- W2269936632 hasConcept C164226766 @default.
- W2269936632 hasConcept C17744445 @default.
- W2269936632 hasConcept C191795146 @default.
- W2269936632 hasConcept C199539241 @default.
- W2269936632 hasConcept C2524010 @default.
- W2269936632 hasConcept C2776036281 @default.
- W2269936632 hasConcept C2779304628 @default.
- W2269936632 hasConcept C31510193 @default.
- W2269936632 hasConcept C31972630 @default.
- W2269936632 hasConcept C33923547 @default.
- W2269936632 hasConcept C36289849 @default.
- W2269936632 hasConcept C41008148 @default.
- W2269936632 hasConcept C62520636 @default.
- W2269936632 hasConcept C83546350 @default.
- W2269936632 hasConcept C92207270 @default.
- W2269936632 hasConceptScore W2269936632C105795698 @default.
- W2269936632 hasConceptScore W2269936632C114614502 @default.
- W2269936632 hasConceptScore W2269936632C115961682 @default.
- W2269936632 hasConceptScore W2269936632C121332964 @default.
- W2269936632 hasConceptScore W2269936632C144024400 @default.
- W2269936632 hasConceptScore W2269936632C153180895 @default.
- W2269936632 hasConceptScore W2269936632C154945302 @default.
- W2269936632 hasConceptScore W2269936632C158693339 @default.
- W2269936632 hasConceptScore W2269936632C164226766 @default.
- W2269936632 hasConceptScore W2269936632C17744445 @default.
- W2269936632 hasConceptScore W2269936632C191795146 @default.
- W2269936632 hasConceptScore W2269936632C199539241 @default.
- W2269936632 hasConceptScore W2269936632C2524010 @default.
- W2269936632 hasConceptScore W2269936632C2776036281 @default.
- W2269936632 hasConceptScore W2269936632C2779304628 @default.
- W2269936632 hasConceptScore W2269936632C31510193 @default.
- W2269936632 hasConceptScore W2269936632C31972630 @default.
- W2269936632 hasConceptScore W2269936632C33923547 @default.
- W2269936632 hasConceptScore W2269936632C36289849 @default.
- W2269936632 hasConceptScore W2269936632C41008148 @default.
- W2269936632 hasConceptScore W2269936632C62520636 @default.
- W2269936632 hasConceptScore W2269936632C83546350 @default.
- W2269936632 hasConceptScore W2269936632C92207270 @default.
- W2269936632 hasLocation W22699366321 @default.
- W2269936632 hasOpenAccess W2269936632 @default.
- W2269936632 hasPrimaryLocation W22699366321 @default.
- W2269936632 hasRelatedWork W1601714215 @default.
- W2269936632 hasRelatedWork W1979655562 @default.
- W2269936632 hasRelatedWork W1992132899 @default.
- W2269936632 hasRelatedWork W2001178002 @default.
- W2269936632 hasRelatedWork W2047030178 @default.
- W2269936632 hasRelatedWork W2090075425 @default.
- W2269936632 hasRelatedWork W2102192850 @default.
- W2269936632 hasRelatedWork W2112903068 @default.