Matches in SemOpenAlex for { <https://semopenalex.org/work/W2270188535> ?p ?o ?g. }
- W2270188535 endingPage "34" @default.
- W2270188535 startingPage "1" @default.
- W2270188535 abstract "The design and evaluation of tag recommendation methods has historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. Promoting novelty and diversity in tag recommendation not only increases the chances that the user will select “some” of the recommended tags but also promotes complementary information (i.e., tags), which helps to cover multiple aspects or topics related to the target object. Previous work has addressed the tag recommendation problem by exploiting at most two of the following aspects: (1) relevance, (2) explicit topic diversity, and (3) novelty. In contrast, here we tackle these three aspects conjointly, by introducing two new tag recommendation methods that cover all three aspects of the problem at different levels. Our first method, called Random Forest with topic-related attributes , or RF t , extends a relevance-driven tag recommender based on the Random Forest ( RF ) learning-to-rank method by including new tag attributes to capture the extent to which a candidate tag is related to the topics of the target object. This solution captures topic diversity as well as novelty at the attribute level while aiming at maximizing relevance in its objective function. Our second method, called Explicit Tag Recommendation Diversifier with Novelty Promotion , or xTReND , reranks the recommendations provided by any tag recommender to jointly promote relevance, novelty, and topic diversity. We use RF t as a basic recommender applied before the reranking, thus building a solution that addresses the problem at both attribute and objective levels. Furthermore, to enable the use of our solutions on applications in which category information is unavailable, we investigate the suitability of using latent Dirichlet allocation (LDA) to automatically generate topics for objects. We evaluate all tag recommendation approaches using real data from five popular Web 2.0 applications. Our results show that RF t greatly outperforms the relevance-driven RF baseline in diversity while producing gains in relevance as well. We also find that our new xTReND reranker obtains considerable gains in both novelty and relevance when compared to that same baseline while keeping the same relevance levels. Furthermore, compared to our previous reranker method, xTReD , which does not consider novelty, xTReND is also quite effective, improving the novelty of the recommended tags while keeping similar relevance and diversity levels in most datasets and scenarios. Comparing our two new proposals, we find that xTReND considerably outperforms RF t in terms of novelty and diversity with only small losses (under 4%) in relevance. Overall, considering the trade-off among relevance, novelty, and diversity, our results demonstrate the superiority of xTReND over the baselines and the proposed alternative, RF t . Finally, the use of automatically generated latent topics as an alternative to manually labeled categories also provides significant improvements, which greatly enhances the applicability of our solutions to applications where the latter is not available." @default.
- W2270188535 created "2016-06-24" @default.
- W2270188535 creator A5025385531 @default.
- W2270188535 creator A5033559575 @default.
- W2270188535 creator A5041484427 @default.
- W2270188535 creator A5046370637 @default.
- W2270188535 creator A5084044470 @default.
- W2270188535 date "2016-02-01" @default.
- W2270188535 modified "2023-10-17" @default.
- W2270188535 title "Beyond Relevance" @default.
- W2270188535 cites W102437958 @default.
- W2270188535 cites W10962629 @default.
- W2270188535 cites W1967787801 @default.
- W2270188535 cites W1969077952 @default.
- W2270188535 cites W1976859382 @default.
- W2270188535 cites W1990313671 @default.
- W2270188535 cites W1990843604 @default.
- W2270188535 cites W1993320088 @default.
- W2270188535 cites W2003200508 @default.
- W2270188535 cites W2011700584 @default.
- W2270188535 cites W2023188792 @default.
- W2270188535 cites W2026430213 @default.
- W2270188535 cites W2026893190 @default.
- W2270188535 cites W2031237011 @default.
- W2270188535 cites W2033009633 @default.
- W2270188535 cites W2036203081 @default.
- W2270188535 cites W2045453095 @default.
- W2270188535 cites W2048571927 @default.
- W2270188535 cites W2050265055 @default.
- W2270188535 cites W2052603567 @default.
- W2270188535 cites W2061698594 @default.
- W2270188535 cites W2079728196 @default.
- W2270188535 cites W2080379754 @default.
- W2270188535 cites W2083381833 @default.
- W2270188535 cites W2087937280 @default.
- W2270188535 cites W2089349245 @default.
- W2270188535 cites W2090041477 @default.
- W2270188535 cites W2096130203 @default.
- W2270188535 cites W2096738524 @default.
- W2270188535 cites W2114822471 @default.
- W2270188535 cites W2118813510 @default.
- W2270188535 cites W2128359436 @default.
- W2270188535 cites W2132314908 @default.
- W2270188535 cites W2139420544 @default.
- W2270188535 cites W2143996311 @default.
- W2270188535 cites W2144807535 @default.
- W2270188535 cites W2150032155 @default.
- W2270188535 cites W2152019382 @default.
- W2270188535 cites W2157391629 @default.
- W2270188535 cites W2159155347 @default.
- W2270188535 cites W2171258484 @default.
- W2270188535 cites W2174706414 @default.
- W2270188535 cites W249515776 @default.
- W2270188535 cites W3138773240 @default.
- W2270188535 cites W4206671592 @default.
- W2270188535 cites W4230624213 @default.
- W2270188535 doi "https://doi.org/10.1145/2801130" @default.
- W2270188535 hasPublicationYear "2016" @default.
- W2270188535 type Work @default.
- W2270188535 sameAs 2270188535 @default.
- W2270188535 citedByCount "22" @default.
- W2270188535 countsByYear W22701885352016 @default.
- W2270188535 countsByYear W22701885352017 @default.
- W2270188535 countsByYear W22701885352018 @default.
- W2270188535 countsByYear W22701885352019 @default.
- W2270188535 countsByYear W22701885352020 @default.
- W2270188535 countsByYear W22701885352021 @default.
- W2270188535 countsByYear W22701885352022 @default.
- W2270188535 countsByYear W22701885352023 @default.
- W2270188535 crossrefType "journal-article" @default.
- W2270188535 hasAuthorship W2270188535A5025385531 @default.
- W2270188535 hasAuthorship W2270188535A5033559575 @default.
- W2270188535 hasAuthorship W2270188535A5041484427 @default.
- W2270188535 hasAuthorship W2270188535A5046370637 @default.
- W2270188535 hasAuthorship W2270188535A5084044470 @default.
- W2270188535 hasConcept C114614502 @default.
- W2270188535 hasConcept C136764020 @default.
- W2270188535 hasConcept C138885662 @default.
- W2270188535 hasConcept C14036430 @default.
- W2270188535 hasConcept C144024400 @default.
- W2270188535 hasConcept C154945302 @default.
- W2270188535 hasConcept C158154518 @default.
- W2270188535 hasConcept C164226766 @default.
- W2270188535 hasConcept C17744445 @default.
- W2270188535 hasConcept C189430467 @default.
- W2270188535 hasConcept C19165224 @default.
- W2270188535 hasConcept C199539241 @default.
- W2270188535 hasConcept C23123220 @default.
- W2270188535 hasConcept C27206212 @default.
- W2270188535 hasConcept C2778738651 @default.
- W2270188535 hasConcept C2781238097 @default.
- W2270188535 hasConcept C2781316041 @default.
- W2270188535 hasConcept C33923547 @default.
- W2270188535 hasConcept C41008148 @default.
- W2270188535 hasConcept C557471498 @default.
- W2270188535 hasConcept C78458016 @default.
- W2270188535 hasConcept C86037889 @default.
- W2270188535 hasConcept C86803240 @default.