Matches in SemOpenAlex for { <https://semopenalex.org/work/W2270742775> ?p ?o ?g. }
- W2270742775 endingPage "36" @default.
- W2270742775 startingPage "25" @default.
- W2270742775 abstract "The apparent leach kinetics for an ore particle within a heap leaching system depend on the chemical conditions in the fluids around the particle, the mass transport within the particle and the reaction kinetics at the surface of each mineral grain. The apparent rate kinetics thus depend upon the distribution of the mineral grains, in terms of both size and position, within the individual ore particles, as well as the evolution of this distribution. Traditionally this behaviour has been modelled using simplified relationships such as the shrinking core model. In this paper a method for simulating this evolution and the resultant kinetics based directly on 3D XMT images of the internal structure of the particles is presented. The model includes mass transport through the gangue matrix, surface reaction kinetics and the dissolution and subsequent evolution of the individual mineral grains within the ore particle. Different minerals and mineral associations will result in different surface reaction kinetics. One of the key inputs into this model is thus the distribution of the surface rate kinetics. A method for experimentally determining this distribution is presented. The simulation results are compared to the evolution of real particles as they undergo leaching as measured using a time sequence of 3D XMT images of a leaching column. It was found that these simulations are able to accurately predict both the overall leaching trends, as well as the leaching behaviour of mineral grains in classes based on their size and distance to the particle surface. The leaching behaviour did not follow that of a simple shrinking core approximation, with the actual spatial and size distribution of the grains, as well as the distribution of their surface rate kinetics, all impacting the apparent leach kinetics. For the copper ore particles used in this work the best fit to the experiments was achieved at an intermediate value of the dimensionless group that characterises the relative importance of surface kinetics to diffusion indicating that both need to be considered for accurate modelling. This paper thus demonstrates that using 3D XMT to provide both structural and kinetic data and incorporating this information into a particle scale simulator provides an improved basis for predicting particle scale leach performance." @default.
- W2270742775 created "2016-06-24" @default.
- W2270742775 creator A5022585138 @default.
- W2270742775 creator A5032686136 @default.
- W2270742775 creator A5054123136 @default.
- W2270742775 creator A5058746735 @default.
- W2270742775 creator A5082288549 @default.
- W2270742775 date "2016-06-01" @default.
- W2270742775 modified "2023-10-18" @default.
- W2270742775 title "Modelling particle scale leach kinetics based on X-ray computed micro-tomography images" @default.
- W2270742775 cites W1965154837 @default.
- W2270742775 cites W1969832505 @default.
- W2270742775 cites W1970636632 @default.
- W2270742775 cites W1973796049 @default.
- W2270742775 cites W1983340217 @default.
- W2270742775 cites W1998138700 @default.
- W2270742775 cites W2006493549 @default.
- W2270742775 cites W2014023880 @default.
- W2270742775 cites W2015933222 @default.
- W2270742775 cites W2017322122 @default.
- W2270742775 cites W2025836343 @default.
- W2270742775 cites W2026632831 @default.
- W2270742775 cites W2039744473 @default.
- W2270742775 cites W2040188456 @default.
- W2270742775 cites W2040496500 @default.
- W2270742775 cites W2056394303 @default.
- W2270742775 cites W2083860642 @default.
- W2270742775 cites W2089386117 @default.
- W2270742775 cites W2107566402 @default.
- W2270742775 cites W2115993062 @default.
- W2270742775 cites W2129809879 @default.
- W2270742775 cites W2143788335 @default.
- W2270742775 doi "https://doi.org/10.1016/j.hydromet.2016.02.008" @default.
- W2270742775 hasPublicationYear "2016" @default.
- W2270742775 type Work @default.
- W2270742775 sameAs 2270742775 @default.
- W2270742775 citedByCount "32" @default.
- W2270742775 countsByYear W22707427752016 @default.
- W2270742775 countsByYear W22707427752017 @default.
- W2270742775 countsByYear W22707427752018 @default.
- W2270742775 countsByYear W22707427752019 @default.
- W2270742775 countsByYear W22707427752020 @default.
- W2270742775 countsByYear W22707427752021 @default.
- W2270742775 countsByYear W22707427752022 @default.
- W2270742775 countsByYear W22707427752023 @default.
- W2270742775 crossrefType "journal-article" @default.
- W2270742775 hasAuthorship W2270742775A5022585138 @default.
- W2270742775 hasAuthorship W2270742775A5032686136 @default.
- W2270742775 hasAuthorship W2270742775A5054123136 @default.
- W2270742775 hasAuthorship W2270742775A5058746735 @default.
- W2270742775 hasAuthorship W2270742775A5082288549 @default.
- W2270742775 hasBestOaLocation W22707427751 @default.
- W2270742775 hasConcept C111368507 @default.
- W2270742775 hasConcept C121332964 @default.
- W2270742775 hasConcept C127313418 @default.
- W2270742775 hasConcept C127413603 @default.
- W2270742775 hasConcept C147789679 @default.
- W2270742775 hasConcept C148898269 @default.
- W2270742775 hasConcept C159390177 @default.
- W2270742775 hasConcept C159750122 @default.
- W2270742775 hasConcept C172816927 @default.
- W2270742775 hasConcept C178790620 @default.
- W2270742775 hasConcept C185592680 @default.
- W2270742775 hasConcept C187530423 @default.
- W2270742775 hasConcept C191897082 @default.
- W2270742775 hasConcept C192562407 @default.
- W2270742775 hasConcept C199289684 @default.
- W2270742775 hasConcept C2777541362 @default.
- W2270742775 hasConcept C2778517922 @default.
- W2270742775 hasConcept C36663273 @default.
- W2270742775 hasConcept C42360764 @default.
- W2270742775 hasConcept C50307863 @default.
- W2270742775 hasConcept C5166401 @default.
- W2270742775 hasConcept C544778455 @default.
- W2270742775 hasConcept C60448018 @default.
- W2270742775 hasConcept C62520636 @default.
- W2270742775 hasConcept C7028197 @default.
- W2270742775 hasConcept C88380143 @default.
- W2270742775 hasConcept C90982505 @default.
- W2270742775 hasConcept C98380375 @default.
- W2270742775 hasConceptScore W2270742775C111368507 @default.
- W2270742775 hasConceptScore W2270742775C121332964 @default.
- W2270742775 hasConceptScore W2270742775C127313418 @default.
- W2270742775 hasConceptScore W2270742775C127413603 @default.
- W2270742775 hasConceptScore W2270742775C147789679 @default.
- W2270742775 hasConceptScore W2270742775C148898269 @default.
- W2270742775 hasConceptScore W2270742775C159390177 @default.
- W2270742775 hasConceptScore W2270742775C159750122 @default.
- W2270742775 hasConceptScore W2270742775C172816927 @default.
- W2270742775 hasConceptScore W2270742775C178790620 @default.
- W2270742775 hasConceptScore W2270742775C185592680 @default.
- W2270742775 hasConceptScore W2270742775C187530423 @default.
- W2270742775 hasConceptScore W2270742775C191897082 @default.
- W2270742775 hasConceptScore W2270742775C192562407 @default.
- W2270742775 hasConceptScore W2270742775C199289684 @default.
- W2270742775 hasConceptScore W2270742775C2777541362 @default.
- W2270742775 hasConceptScore W2270742775C2778517922 @default.
- W2270742775 hasConceptScore W2270742775C36663273 @default.