Matches in SemOpenAlex for { <https://semopenalex.org/work/W2271018840> ?p ?o ?g. }
- W2271018840 endingPage "860" @default.
- W2271018840 startingPage "843" @default.
- W2271018840 abstract "Abstract. Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow) show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process." @default.
- W2271018840 created "2016-06-24" @default.
- W2271018840 creator A5001952834 @default.
- W2271018840 creator A5027345031 @default.
- W2271018840 creator A5059939911 @default.
- W2271018840 date "2016-01-25" @default.
- W2271018840 modified "2023-09-30" @default.
- W2271018840 title "The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?" @default.
- W2271018840 cites W1526382253 @default.
- W2271018840 cites W1530662989 @default.
- W2271018840 cites W1534207702 @default.
- W2271018840 cites W1550627816 @default.
- W2271018840 cites W1552822887 @default.
- W2271018840 cites W1553038050 @default.
- W2271018840 cites W1633873091 @default.
- W2271018840 cites W1817182403 @default.
- W2271018840 cites W1822467393 @default.
- W2271018840 cites W1969981169 @default.
- W2271018840 cites W1972586783 @default.
- W2271018840 cites W1973755324 @default.
- W2271018840 cites W1976424300 @default.
- W2271018840 cites W1981008265 @default.
- W2271018840 cites W1982738268 @default.
- W2271018840 cites W1983398446 @default.
- W2271018840 cites W1989241928 @default.
- W2271018840 cites W1989907325 @default.
- W2271018840 cites W1993009622 @default.
- W2271018840 cites W1996165799 @default.
- W2271018840 cites W1997253873 @default.
- W2271018840 cites W1998711833 @default.
- W2271018840 cites W1999849707 @default.
- W2271018840 cites W2001658248 @default.
- W2271018840 cites W2009396288 @default.
- W2271018840 cites W2009849014 @default.
- W2271018840 cites W2011994939 @default.
- W2271018840 cites W2015879225 @default.
- W2271018840 cites W2017992920 @default.
- W2271018840 cites W2019183187 @default.
- W2271018840 cites W2019835963 @default.
- W2271018840 cites W2023510214 @default.
- W2271018840 cites W2024827021 @default.
- W2271018840 cites W2025536383 @default.
- W2271018840 cites W2027271127 @default.
- W2271018840 cites W2028020219 @default.
- W2271018840 cites W2033857910 @default.
- W2271018840 cites W2033898446 @default.
- W2271018840 cites W2039411720 @default.
- W2271018840 cites W2039684469 @default.
- W2271018840 cites W2039998204 @default.
- W2271018840 cites W2040011295 @default.
- W2271018840 cites W2044276853 @default.
- W2271018840 cites W2044765007 @default.
- W2271018840 cites W2047710532 @default.
- W2271018840 cites W2049255206 @default.
- W2271018840 cites W2052983809 @default.
- W2271018840 cites W2054119472 @default.
- W2271018840 cites W2054690261 @default.
- W2271018840 cites W2057319353 @default.
- W2271018840 cites W2070259289 @default.
- W2271018840 cites W2071750655 @default.
- W2271018840 cites W2074275515 @default.
- W2271018840 cites W2074578396 @default.
- W2271018840 cites W2080919855 @default.
- W2271018840 cites W2081423293 @default.
- W2271018840 cites W2082257803 @default.
- W2271018840 cites W2088516971 @default.
- W2271018840 cites W2089101130 @default.
- W2271018840 cites W2092078629 @default.
- W2271018840 cites W2092083121 @default.
- W2271018840 cites W2098586768 @default.
- W2271018840 cites W2106648215 @default.
- W2271018840 cites W2109979560 @default.
- W2271018840 cites W2110052588 @default.
- W2271018840 cites W2114202765 @default.
- W2271018840 cites W2115444218 @default.
- W2271018840 cites W2118491483 @default.
- W2271018840 cites W2120456659 @default.
- W2271018840 cites W2121824074 @default.
- W2271018840 cites W2122017213 @default.
- W2271018840 cites W2128294841 @default.
- W2271018840 cites W2133687274 @default.
- W2271018840 cites W2139117705 @default.
- W2271018840 cites W2140142466 @default.
- W2271018840 cites W2142284063 @default.
- W2271018840 cites W2154238011 @default.
- W2271018840 cites W2156016517 @default.
- W2271018840 cites W2159713378 @default.
- W2271018840 cites W2164990341 @default.
- W2271018840 cites W2169752274 @default.
- W2271018840 cites W2418099302 @default.
- W2271018840 cites W2587531439 @default.
- W2271018840 cites W4232963430 @default.
- W2271018840 cites W4234512562 @default.
- W2271018840 cites W4244848380 @default.
- W2271018840 cites W4247404030 @default.
- W2271018840 cites W4256366748 @default.
- W2271018840 doi "https://doi.org/10.5194/acp-16-843-2016" @default.
- W2271018840 hasPublicationYear "2016" @default.