Matches in SemOpenAlex for { <https://semopenalex.org/work/W2271088400> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2271088400 abstract "It’s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications. Keywords—admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression" @default.
- W2271088400 created "2016-06-24" @default.
- W2271088400 creator A5015848572 @default.
- W2271088400 creator A5020037252 @default.
- W2271088400 creator A5034415838 @default.
- W2271088400 creator A5066887020 @default.
- W2271088400 creator A5077114895 @default.
- W2271088400 date "2010-05-28" @default.
- W2271088400 modified "2023-09-27" @default.
- W2271088400 title "Motivated Support Vector Regression using Structural Prior Knowledge" @default.
- W2271088400 cites W120550985 @default.
- W2271088400 cites W1488435683 @default.
- W2271088400 cites W1565176583 @default.
- W2271088400 cites W1568892534 @default.
- W2271088400 cites W1576213419 @default.
- W2271088400 cites W1584120419 @default.
- W2271088400 cites W1847580023 @default.
- W2271088400 cites W1964357740 @default.
- W2271088400 cites W1986280275 @default.
- W2271088400 cites W2014158063 @default.
- W2271088400 cites W2046227236 @default.
- W2271088400 cites W2055522016 @default.
- W2271088400 cites W2057772063 @default.
- W2271088400 cites W2070155243 @default.
- W2271088400 cites W2072231193 @default.
- W2271088400 cites W2090224109 @default.
- W2271088400 cites W2090313502 @default.
- W2271088400 cites W2113238782 @default.
- W2271088400 cites W2121649666 @default.
- W2271088400 cites W2134925510 @default.
- W2271088400 cites W2135845071 @default.
- W2271088400 cites W2139212933 @default.
- W2271088400 cites W2145722931 @default.
- W2271088400 cites W2146766088 @default.
- W2271088400 cites W2153358247 @default.
- W2271088400 cites W2156909104 @default.
- W2271088400 cites W2161033177 @default.
- W2271088400 cites W2171096262 @default.
- W2271088400 cites W2267176325 @default.
- W2271088400 cites W3088834924 @default.
- W2271088400 cites W34551333 @default.
- W2271088400 cites W1562251502 @default.
- W2271088400 doi "https://doi.org/10.5281/zenodo.1328496" @default.
- W2271088400 hasPublicationYear "2010" @default.
- W2271088400 type Work @default.
- W2271088400 sameAs 2271088400 @default.
- W2271088400 citedByCount "0" @default.
- W2271088400 crossrefType "journal-article" @default.
- W2271088400 hasAuthorship W2271088400A5015848572 @default.
- W2271088400 hasAuthorship W2271088400A5020037252 @default.
- W2271088400 hasAuthorship W2271088400A5034415838 @default.
- W2271088400 hasAuthorship W2271088400A5066887020 @default.
- W2271088400 hasAuthorship W2271088400A5077114895 @default.
- W2271088400 hasBestOaLocation W22710884001 @default.
- W2271088400 hasConcept C105795698 @default.
- W2271088400 hasConcept C119857082 @default.
- W2271088400 hasConcept C12267149 @default.
- W2271088400 hasConcept C152877465 @default.
- W2271088400 hasConcept C154945302 @default.
- W2271088400 hasConcept C33923547 @default.
- W2271088400 hasConcept C41008148 @default.
- W2271088400 hasConcept C83546350 @default.
- W2271088400 hasConceptScore W2271088400C105795698 @default.
- W2271088400 hasConceptScore W2271088400C119857082 @default.
- W2271088400 hasConceptScore W2271088400C12267149 @default.
- W2271088400 hasConceptScore W2271088400C152877465 @default.
- W2271088400 hasConceptScore W2271088400C154945302 @default.
- W2271088400 hasConceptScore W2271088400C33923547 @default.
- W2271088400 hasConceptScore W2271088400C41008148 @default.
- W2271088400 hasConceptScore W2271088400C83546350 @default.
- W2271088400 hasLocation W22710884001 @default.
- W2271088400 hasOpenAccess W2271088400 @default.
- W2271088400 hasPrimaryLocation W22710884001 @default.
- W2271088400 hasRelatedWork W1996541855 @default.
- W2271088400 hasRelatedWork W2101819884 @default.
- W2271088400 hasRelatedWork W2520775273 @default.
- W2271088400 hasRelatedWork W2803710604 @default.
- W2271088400 hasRelatedWork W2937631562 @default.
- W2271088400 hasRelatedWork W2979979539 @default.
- W2271088400 hasRelatedWork W2982170967 @default.
- W2271088400 hasRelatedWork W3194539120 @default.
- W2271088400 hasRelatedWork W3195168932 @default.
- W2271088400 hasRelatedWork W4292148089 @default.
- W2271088400 isParatext "false" @default.
- W2271088400 isRetracted "false" @default.
- W2271088400 magId "2271088400" @default.
- W2271088400 workType "article" @default.