Matches in SemOpenAlex for { <https://semopenalex.org/work/W2271301306> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2271301306 abstract "Soft-thresholding is a sparse modeling method that is typically applied to wavelet denoising in statistical signal processing and analysis. It has a single parameter that controls a threshold level on wavelet coefficients and, simultaneously, amount of shrinkage for coefficients of un-removed components. This parametrization is possible to cause excess shrinkage, thus, estimation bias at a sparse representation; i.e. there is a dilemma between sparsity and prediction accuracy. To relax this problem, we considered to introduce positive scaling on soft-thresholding estimator, by which threshold level and amount of shrinkage are independently controlled. Especially, in this paper, we proposed component-wise and data-dependent scaling in a setting of non-parametric orthogonal regression problem including discrete wavelet transform. We call our scaling method adaptive scaling. We here employed soft-thresholding method based on LARS(least angle regression), by which the model selection problem reduces to the determination of the number of un-removed components. We derived a risk under LARS-based soft-thresholding with the proposed adaptive scaling and established a model selection criterion as an unbiased estimate of the risk. We also analyzed some properties of the risk curve and found that the model selection criterion is possible to select a model with low risk and high sparsity compared to a naive soft-thresholding method. This theoretical speculation was verified by a simple numerical experiment and an application to wavelet denoising." @default.
- W2271301306 created "2016-06-24" @default.
- W2271301306 creator A5089468899 @default.
- W2271301306 date "2016-01-29" @default.
- W2271301306 modified "2023-09-27" @default.
- W2271301306 title "Adaptive scaling for soft-thresholding estimator" @default.
- W2271301306 cites W1502400145 @default.
- W2271301306 cites W1963976807 @default.
- W2271301306 cites W1968694834 @default.
- W2271301306 cites W1980620433 @default.
- W2271301306 cites W2020925091 @default.
- W2271301306 cites W2054640142 @default.
- W2271301306 cites W2063978378 @default.
- W2271301306 cites W2074682976 @default.
- W2271301306 cites W2079724595 @default.
- W2271301306 cites W2093502664 @default.
- W2271301306 cites W2122825543 @default.
- W2271301306 cites W2135046866 @default.
- W2271301306 cites W2294175020 @default.
- W2271301306 cites W3016197797 @default.
- W2271301306 hasPublicationYear "2016" @default.
- W2271301306 type Work @default.
- W2271301306 sameAs 2271301306 @default.
- W2271301306 citedByCount "0" @default.
- W2271301306 crossrefType "posted-content" @default.
- W2271301306 hasAuthorship W2271301306A5089468899 @default.
- W2271301306 hasConcept C105795698 @default.
- W2271301306 hasConcept C11413529 @default.
- W2271301306 hasConcept C115961682 @default.
- W2271301306 hasConcept C153180895 @default.
- W2271301306 hasConcept C154945302 @default.
- W2271301306 hasConcept C185429906 @default.
- W2271301306 hasConcept C191178318 @default.
- W2271301306 hasConcept C2524010 @default.
- W2271301306 hasConcept C33923547 @default.
- W2271301306 hasConcept C41008148 @default.
- W2271301306 hasConcept C47432892 @default.
- W2271301306 hasConcept C99844830 @default.
- W2271301306 hasConceptScore W2271301306C105795698 @default.
- W2271301306 hasConceptScore W2271301306C11413529 @default.
- W2271301306 hasConceptScore W2271301306C115961682 @default.
- W2271301306 hasConceptScore W2271301306C153180895 @default.
- W2271301306 hasConceptScore W2271301306C154945302 @default.
- W2271301306 hasConceptScore W2271301306C185429906 @default.
- W2271301306 hasConceptScore W2271301306C191178318 @default.
- W2271301306 hasConceptScore W2271301306C2524010 @default.
- W2271301306 hasConceptScore W2271301306C33923547 @default.
- W2271301306 hasConceptScore W2271301306C41008148 @default.
- W2271301306 hasConceptScore W2271301306C47432892 @default.
- W2271301306 hasConceptScore W2271301306C99844830 @default.
- W2271301306 hasLocation W22713013061 @default.
- W2271301306 hasOpenAccess W2271301306 @default.
- W2271301306 hasPrimaryLocation W22713013061 @default.
- W2271301306 hasRelatedWork W1596106312 @default.
- W2271301306 hasRelatedWork W1637473734 @default.
- W2271301306 hasRelatedWork W2007083035 @default.
- W2271301306 hasRelatedWork W2026114584 @default.
- W2271301306 hasRelatedWork W2039569017 @default.
- W2271301306 hasRelatedWork W2054656164 @default.
- W2271301306 hasRelatedWork W2057529322 @default.
- W2271301306 hasRelatedWork W2092416475 @default.
- W2271301306 hasRelatedWork W2108855378 @default.
- W2271301306 hasRelatedWork W2357786761 @default.
- W2271301306 hasRelatedWork W2359891092 @default.
- W2271301306 hasRelatedWork W2511890448 @default.
- W2271301306 hasRelatedWork W2590336571 @default.
- W2271301306 hasRelatedWork W2600118080 @default.
- W2271301306 hasRelatedWork W2734332964 @default.
- W2271301306 hasRelatedWork W2767801842 @default.
- W2271301306 hasRelatedWork W2949297540 @default.
- W2271301306 hasRelatedWork W2988736337 @default.
- W2271301306 hasRelatedWork W3016633288 @default.
- W2271301306 hasRelatedWork W3146025772 @default.
- W2271301306 isParatext "false" @default.
- W2271301306 isRetracted "false" @default.
- W2271301306 magId "2271301306" @default.
- W2271301306 workType "article" @default.