Matches in SemOpenAlex for { <https://semopenalex.org/work/W2271339716> ?p ?o ?g. }
- W2271339716 endingPage "1485" @default.
- W2271339716 startingPage "1463" @default.
- W2271339716 abstract "Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of “big data”, traditional inference algorithms for such a model are increasingly limi ted due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm." @default.
- W2271339716 created "2016-06-24" @default.
- W2271339716 creator A5000755750 @default.
- W2271339716 creator A5009993784 @default.
- W2271339716 creator A5021283893 @default.
- W2271339716 creator A5030015771 @default.
- W2271339716 creator A5047580482 @default.
- W2271339716 date "2017-11-15" @default.
- W2271339716 modified "2023-10-16" @default.
- W2271339716 title "A scalable community detection algorithm for large graphs using stochastic block models" @default.
- W2271339716 cites W1503428008 @default.
- W2271339716 cites W1656217255 @default.
- W2271339716 cites W1692247819 @default.
- W2271339716 cites W1895325410 @default.
- W2271339716 cites W1970267553 @default.
- W2271339716 cites W1981871860 @default.
- W2271339716 cites W1988888548 @default.
- W2271339716 cites W1991408655 @default.
- W2271339716 cites W1992613305 @default.
- W2271339716 cites W2029901035 @default.
- W2271339716 cites W2033947830 @default.
- W2271339716 cites W2045886945 @default.
- W2271339716 cites W2047940964 @default.
- W2271339716 cites W2056480257 @default.
- W2271339716 cites W2061099285 @default.
- W2271339716 cites W2070232376 @default.
- W2271339716 cites W2089458547 @default.
- W2271339716 cites W2099097464 @default.
- W2271339716 cites W2102907934 @default.
- W2271339716 cites W2111588083 @default.
- W2271339716 cites W2111708605 @default.
- W2271339716 cites W2116433231 @default.
- W2271339716 cites W2120043163 @default.
- W2271339716 cites W2128366083 @default.
- W2271339716 cites W2129898896 @default.
- W2271339716 cites W2131681506 @default.
- W2271339716 cites W2132202037 @default.
- W2271339716 cites W2132914434 @default.
- W2271339716 cites W2133095386 @default.
- W2271339716 cites W2138782497 @default.
- W2271339716 cites W2146570277 @default.
- W2271339716 cites W2146591355 @default.
- W2271339716 cites W2151936673 @default.
- W2271339716 cites W2152090207 @default.
- W2271339716 cites W2244118489 @default.
- W2271339716 cites W2963264680 @default.
- W2271339716 cites W347697680 @default.
- W2271339716 cites W4251670979 @default.
- W2271339716 cites W4291230573 @default.
- W2271339716 cites W73352345 @default.
- W2271339716 doi "https://doi.org/10.3233/ida-163156" @default.
- W2271339716 hasPublicationYear "2017" @default.
- W2271339716 type Work @default.
- W2271339716 sameAs 2271339716 @default.
- W2271339716 citedByCount "5" @default.
- W2271339716 countsByYear W22713397162015 @default.
- W2271339716 countsByYear W22713397162020 @default.
- W2271339716 countsByYear W22713397162021 @default.
- W2271339716 crossrefType "journal-article" @default.
- W2271339716 hasAuthorship W2271339716A5000755750 @default.
- W2271339716 hasAuthorship W2271339716A5009993784 @default.
- W2271339716 hasAuthorship W2271339716A5021283893 @default.
- W2271339716 hasAuthorship W2271339716A5030015771 @default.
- W2271339716 hasAuthorship W2271339716A5047580482 @default.
- W2271339716 hasBestOaLocation W22713397162 @default.
- W2271339716 hasConcept C11413529 @default.
- W2271339716 hasConcept C120373497 @default.
- W2271339716 hasConcept C132525143 @default.
- W2271339716 hasConcept C134306372 @default.
- W2271339716 hasConcept C154945302 @default.
- W2271339716 hasConcept C173608175 @default.
- W2271339716 hasConcept C187166803 @default.
- W2271339716 hasConcept C2524010 @default.
- W2271339716 hasConcept C2776214188 @default.
- W2271339716 hasConcept C2777210771 @default.
- W2271339716 hasConcept C2779982251 @default.
- W2271339716 hasConcept C311688 @default.
- W2271339716 hasConcept C33923547 @default.
- W2271339716 hasConcept C41008148 @default.
- W2271339716 hasConcept C45374587 @default.
- W2271339716 hasConcept C47458327 @default.
- W2271339716 hasConcept C48044578 @default.
- W2271339716 hasConcept C68339613 @default.
- W2271339716 hasConcept C73555534 @default.
- W2271339716 hasConcept C77088390 @default.
- W2271339716 hasConcept C77553402 @default.
- W2271339716 hasConcept C80444323 @default.
- W2271339716 hasConceptScore W2271339716C11413529 @default.
- W2271339716 hasConceptScore W2271339716C120373497 @default.
- W2271339716 hasConceptScore W2271339716C132525143 @default.
- W2271339716 hasConceptScore W2271339716C134306372 @default.
- W2271339716 hasConceptScore W2271339716C154945302 @default.
- W2271339716 hasConceptScore W2271339716C173608175 @default.
- W2271339716 hasConceptScore W2271339716C187166803 @default.
- W2271339716 hasConceptScore W2271339716C2524010 @default.
- W2271339716 hasConceptScore W2271339716C2776214188 @default.
- W2271339716 hasConceptScore W2271339716C2777210771 @default.
- W2271339716 hasConceptScore W2271339716C2779982251 @default.