Matches in SemOpenAlex for { <https://semopenalex.org/work/W2272252788> ?p ?o ?g. }
- W2272252788 endingPage "1186" @default.
- W2272252788 startingPage "1175" @default.
- W2272252788 abstract "Purpose: Automatic brain image labeling is highly demanded in the field of medical image analysis. Multiatlas‐based approaches are widely used due to their simplicity and robustness in applications. Also, random forest technique is recognized as an efficient method for labeling, although there are several existing limitations. In this paper, the authors intend to address those limitations by proposing a novel framework based on the hierarchical learning of atlas forests. Methods: Their proposed framework aims to train a hierarchy of forests to better correlate voxels in the MR images with their corresponding labels. There are two specific novel strategies for improving brain image labeling. First, different from the conventional ways of using a single level of random forests for brain labeling, the authors design a hierarchical structure to incorporate multiple levels of forests. In particular, each atlas forest in the bottom level is trained in accordance with each individual atlas, and then the bottom‐level forests are clustered based on their capabilities in labeling. For each clustered group, the authors retrain a new representative forest in the higher level by using all atlases associated with the lower‐level atlas forests in the current group, as well as the tentative label maps yielded from the lower level. This clustering and retraining procedure is conducted iteratively to yield a hierarchical structure of forests. Second, in the testing stage, the authors also present a novel atlas forest selection method to determine an optimal set of atlas forests from the constructed hierarchical structure (by disabling those nonoptimal forests) for accurately labeling the test image. Results: For validating their proposed framework, the authors evaluate it on the public datasets, including Alzheimer's disease neuroimaging initiative, Internet brain segmentation repository, and LONI LPBA40. The authors compare the results with the conventional approaches. The experiments show that the use of the two novel strategies can significantly improve the labeling performance. Note that when more levels are constructed in the hierarchy, the labeling performance can be further improved, but more computational time will be also required. Conclusions: The authors have proposed a novel multiatlas‐based framework for automatic and accurate labeling of brain anatomies, which can achieve accurate labeling results for MR brain images." @default.
- W2272252788 created "2016-06-24" @default.
- W2272252788 creator A5000937401 @default.
- W2272252788 creator A5006447298 @default.
- W2272252788 creator A5021809690 @default.
- W2272252788 creator A5070470270 @default.
- W2272252788 creator A5075338951 @default.
- W2272252788 date "2016-02-09" @default.
- W2272252788 modified "2023-10-18" @default.
- W2272252788 title "Automatic labeling of MR brain images by hierarchical learning of atlas forests" @default.
- W2272252788 cites W113453631 @default.
- W2272252788 cites W125636640 @default.
- W2272252788 cites W1524094261 @default.
- W2272252788 cites W1858721549 @default.
- W2272252788 cites W1920618489 @default.
- W2272252788 cites W193582436 @default.
- W2272252788 cites W1965146525 @default.
- W2272252788 cites W1969257438 @default.
- W2272252788 cites W1969739559 @default.
- W2272252788 cites W1987153816 @default.
- W2272252788 cites W1999360130 @default.
- W2272252788 cites W2010587020 @default.
- W2272252788 cites W2018662705 @default.
- W2272252788 cites W2032377318 @default.
- W2272252788 cites W2049247209 @default.
- W2272252788 cites W2057332541 @default.
- W2272252788 cites W2060280062 @default.
- W2272252788 cites W2066839705 @default.
- W2272252788 cites W2083099567 @default.
- W2272252788 cites W2088970218 @default.
- W2272252788 cites W2098684027 @default.
- W2272252788 cites W2102595307 @default.
- W2272252788 cites W2105038642 @default.
- W2272252788 cites W2114740909 @default.
- W2272252788 cites W2128806031 @default.
- W2272252788 cites W2129259959 @default.
- W2272252788 cites W2135535334 @default.
- W2272252788 cites W2148157540 @default.
- W2272252788 cites W2148347694 @default.
- W2272252788 cites W2155513557 @default.
- W2272252788 cites W2162140684 @default.
- W2272252788 cites W2165232124 @default.
- W2272252788 cites W2977883299 @default.
- W2272252788 cites W3097096317 @default.
- W2272252788 cites W4236137412 @default.
- W2272252788 cites W4293171766 @default.
- W2272252788 doi "https://doi.org/10.1118/1.4941011" @default.
- W2272252788 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5148185" @default.
- W2272252788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26936703" @default.
- W2272252788 hasPublicationYear "2016" @default.
- W2272252788 type Work @default.
- W2272252788 sameAs 2272252788 @default.
- W2272252788 citedByCount "25" @default.
- W2272252788 countsByYear W22722527882016 @default.
- W2272252788 countsByYear W22722527882017 @default.
- W2272252788 countsByYear W22722527882018 @default.
- W2272252788 countsByYear W22722527882019 @default.
- W2272252788 countsByYear W22722527882020 @default.
- W2272252788 countsByYear W22722527882021 @default.
- W2272252788 countsByYear W22722527882023 @default.
- W2272252788 crossrefType "journal-article" @default.
- W2272252788 hasAuthorship W2272252788A5000937401 @default.
- W2272252788 hasAuthorship W2272252788A5006447298 @default.
- W2272252788 hasAuthorship W2272252788A5021809690 @default.
- W2272252788 hasAuthorship W2272252788A5070470270 @default.
- W2272252788 hasAuthorship W2272252788A5075338951 @default.
- W2272252788 hasBestOaLocation W22722527882 @default.
- W2272252788 hasConcept C104317684 @default.
- W2272252788 hasConcept C119857082 @default.
- W2272252788 hasConcept C124101348 @default.
- W2272252788 hasConcept C151730666 @default.
- W2272252788 hasConcept C153180895 @default.
- W2272252788 hasConcept C154945302 @default.
- W2272252788 hasConcept C169258074 @default.
- W2272252788 hasConcept C185592680 @default.
- W2272252788 hasConcept C2776673561 @default.
- W2272252788 hasConcept C2780972224 @default.
- W2272252788 hasConcept C41008148 @default.
- W2272252788 hasConcept C54170458 @default.
- W2272252788 hasConcept C55493867 @default.
- W2272252788 hasConcept C63479239 @default.
- W2272252788 hasConcept C73555534 @default.
- W2272252788 hasConcept C86803240 @default.
- W2272252788 hasConcept C92835128 @default.
- W2272252788 hasConceptScore W2272252788C104317684 @default.
- W2272252788 hasConceptScore W2272252788C119857082 @default.
- W2272252788 hasConceptScore W2272252788C124101348 @default.
- W2272252788 hasConceptScore W2272252788C151730666 @default.
- W2272252788 hasConceptScore W2272252788C153180895 @default.
- W2272252788 hasConceptScore W2272252788C154945302 @default.
- W2272252788 hasConceptScore W2272252788C169258074 @default.
- W2272252788 hasConceptScore W2272252788C185592680 @default.
- W2272252788 hasConceptScore W2272252788C2776673561 @default.
- W2272252788 hasConceptScore W2272252788C2780972224 @default.
- W2272252788 hasConceptScore W2272252788C41008148 @default.
- W2272252788 hasConceptScore W2272252788C54170458 @default.
- W2272252788 hasConceptScore W2272252788C55493867 @default.
- W2272252788 hasConceptScore W2272252788C63479239 @default.