Matches in SemOpenAlex for { <https://semopenalex.org/work/W2272462645> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2272462645 abstract "A set of arithmetical sequences $$ a_1, (bmod{ ,, m_1}) quad, quad a_2 , (bmod{,, m_2}) quad, quad dots quad , quad a_k , (bmod{,,m_k}) quad quad , $$ with $$ m_1 leq m_2 leq dots leq m_k quad quad , $$ is called a {it disjoint covering system} (alias {it exact covering system}) if every positive integer belongs to {bf exactly} one of the sequences. Mirski, Newman, Davenport and Rado famously proved that the moduli can't all be distinct. In fact the two largest moduli must be equal, i.e. $m_{k-1}=m_k$ This raises the natural question:How close can you get to getting distinct moduli?, in other words, can you find all such systems where all the moduli are distinct except the largest, that is repeated $r$ times, for any, specific given $r$? It turns out (conjecturally, but almost certainly) that excluding the trivial case where the smallest modulus is 2, for any number of repeats $r$, there are only finitely many such systems. Marc Berger, Alexander Felzenbaum and Aviezri Fraenkel found them all for $r$ up to $9$, and Mekmamu Zeleke and Jamie Simpson extended the list for systems up to $12$ repeats. In the present article we continue the list up to $r=32$. All our systems are correct, but we did not bother to formally prove completeness, but we know for sure that the lists are complete if the largest modulus is $leq 600$, and we are pretty sure that they are complete." @default.
- W2272462645 created "2016-06-24" @default.
- W2272462645 creator A5015661806 @default.
- W2272462645 creator A5058881306 @default.
- W2272462645 creator A5061322084 @default.
- W2272462645 date "2015-11-13" @default.
- W2272462645 modified "2023-09-27" @default.
- W2272462645 title "Searching for Disjoint Covering Systems with Precisely One Repeated Modulus" @default.
- W2272462645 cites W2001588888 @default.
- W2272462645 cites W331343798 @default.
- W2272462645 cites W340917554 @default.
- W2272462645 hasPublicationYear "2015" @default.
- W2272462645 type Work @default.
- W2272462645 sameAs 2272462645 @default.
- W2272462645 citedByCount "0" @default.
- W2272462645 crossrefType "posted-content" @default.
- W2272462645 hasAuthorship W2272462645A5015661806 @default.
- W2272462645 hasAuthorship W2272462645A5058881306 @default.
- W2272462645 hasAuthorship W2272462645A5061322084 @default.
- W2272462645 hasConcept C114614502 @default.
- W2272462645 hasConcept C118615104 @default.
- W2272462645 hasConcept C121089165 @default.
- W2272462645 hasConcept C121332964 @default.
- W2272462645 hasConcept C184264201 @default.
- W2272462645 hasConcept C199360897 @default.
- W2272462645 hasConcept C33923547 @default.
- W2272462645 hasConcept C41008148 @default.
- W2272462645 hasConcept C45340560 @default.
- W2272462645 hasConcept C62520636 @default.
- W2272462645 hasConcept C97137487 @default.
- W2272462645 hasConceptScore W2272462645C114614502 @default.
- W2272462645 hasConceptScore W2272462645C118615104 @default.
- W2272462645 hasConceptScore W2272462645C121089165 @default.
- W2272462645 hasConceptScore W2272462645C121332964 @default.
- W2272462645 hasConceptScore W2272462645C184264201 @default.
- W2272462645 hasConceptScore W2272462645C199360897 @default.
- W2272462645 hasConceptScore W2272462645C33923547 @default.
- W2272462645 hasConceptScore W2272462645C41008148 @default.
- W2272462645 hasConceptScore W2272462645C45340560 @default.
- W2272462645 hasConceptScore W2272462645C62520636 @default.
- W2272462645 hasConceptScore W2272462645C97137487 @default.
- W2272462645 hasLocation W22724626451 @default.
- W2272462645 hasOpenAccess W2272462645 @default.
- W2272462645 hasPrimaryLocation W22724626451 @default.
- W2272462645 hasRelatedWork W1661292865 @default.
- W2272462645 hasRelatedWork W1767752187 @default.
- W2272462645 hasRelatedWork W2037515206 @default.
- W2272462645 hasRelatedWork W2069855300 @default.
- W2272462645 hasRelatedWork W2079306709 @default.
- W2272462645 hasRelatedWork W2284436105 @default.
- W2272462645 hasRelatedWork W2616161222 @default.
- W2272462645 hasRelatedWork W2786559302 @default.
- W2272462645 hasRelatedWork W2910713864 @default.
- W2272462645 hasRelatedWork W2938910622 @default.
- W2272462645 hasRelatedWork W2952374478 @default.
- W2272462645 hasRelatedWork W2952826352 @default.
- W2272462645 hasRelatedWork W2963907582 @default.
- W2272462645 hasRelatedWork W3016883859 @default.
- W2272462645 hasRelatedWork W3098789501 @default.
- W2272462645 hasRelatedWork W3104038630 @default.
- W2272462645 hasRelatedWork W3198971355 @default.
- W2272462645 hasRelatedWork W3211924274 @default.
- W2272462645 hasRelatedWork W2182202465 @default.
- W2272462645 hasRelatedWork W857371213 @default.
- W2272462645 isParatext "false" @default.
- W2272462645 isRetracted "false" @default.
- W2272462645 magId "2272462645" @default.
- W2272462645 workType "article" @default.