Matches in SemOpenAlex for { <https://semopenalex.org/work/W2272502174> ?p ?o ?g. }
- W2272502174 endingPage "70" @default.
- W2272502174 startingPage "62" @default.
- W2272502174 abstract "A powder based processing route was developed to allow manufacturing of thermosetting nanocomposites with high (20 wt%) carbon nanotube (CNT) loading fractions. Adaptation of high shear mixing methods, as used in thermoplastic processing, ensured that the CNTs were well distributed and dispersed even at the highest loadings. By minimising flow distances, compression moulding of powders ensured that the CNTs did not agglomerate during consolidation, and yielded a percolated CNT network in a nanocomposite with excellent electrical and thermal conductivities of 67 S m−1 and 0.77 W m−1 K−1, respectively. Unusually, the CNTs provided effective mechanical reinforcement at even the highest loadings; embrittlement is minimised by avoiding large scale inhomogeneities and the maximum measured Young's modulus (5.4 GPa) and yield strength (90 MPa) could make the nanocomposite an attractive matrix for continuous fibre composites. The macromechanical measurements were interpolated using micromechanical models that were previously successfully applied at the nanoscale." @default.
- W2272502174 created "2016-06-24" @default.
- W2272502174 creator A5017940696 @default.
- W2272502174 creator A5039924960 @default.
- W2272502174 creator A5040537694 @default.
- W2272502174 creator A5042254301 @default.
- W2272502174 creator A5050241702 @default.
- W2272502174 creator A5088135920 @default.
- W2272502174 date "2016-04-01" @default.
- W2272502174 modified "2023-10-01" @default.
- W2272502174 title "Thermosetting nanocomposites with high carbon nanotube loadings processed by a scalable powder based method" @default.
- W2272502174 cites W1966127791 @default.
- W2272502174 cites W1968852504 @default.
- W2272502174 cites W1969111324 @default.
- W2272502174 cites W1970705658 @default.
- W2272502174 cites W1982193100 @default.
- W2272502174 cites W1984484226 @default.
- W2272502174 cites W1985886464 @default.
- W2272502174 cites W1990337654 @default.
- W2272502174 cites W1992137619 @default.
- W2272502174 cites W1992276080 @default.
- W2272502174 cites W1993923126 @default.
- W2272502174 cites W1995558616 @default.
- W2272502174 cites W2000080008 @default.
- W2272502174 cites W2002211014 @default.
- W2272502174 cites W2004980280 @default.
- W2272502174 cites W2007417719 @default.
- W2272502174 cites W2012092571 @default.
- W2272502174 cites W2016303090 @default.
- W2272502174 cites W2016949816 @default.
- W2272502174 cites W2017068521 @default.
- W2272502174 cites W2019887253 @default.
- W2272502174 cites W2020632840 @default.
- W2272502174 cites W2025868576 @default.
- W2272502174 cites W2028594095 @default.
- W2272502174 cites W2034090834 @default.
- W2272502174 cites W2035797272 @default.
- W2272502174 cites W2041908727 @default.
- W2272502174 cites W2044973138 @default.
- W2272502174 cites W2049418159 @default.
- W2272502174 cites W2054749969 @default.
- W2272502174 cites W2071823157 @default.
- W2272502174 cites W2071909378 @default.
- W2272502174 cites W2072316569 @default.
- W2272502174 cites W2075154996 @default.
- W2272502174 cites W2076249607 @default.
- W2272502174 cites W2077244109 @default.
- W2272502174 cites W2078067067 @default.
- W2272502174 cites W2078848583 @default.
- W2272502174 cites W2084531526 @default.
- W2272502174 cites W2088519138 @default.
- W2272502174 cites W2089190473 @default.
- W2272502174 cites W2092034103 @default.
- W2272502174 cites W2100825710 @default.
- W2272502174 cites W2109305061 @default.
- W2272502174 cites W2142294289 @default.
- W2272502174 cites W2149529546 @default.
- W2272502174 cites W2259975871 @default.
- W2272502174 cites W4239266051 @default.
- W2272502174 doi "https://doi.org/10.1016/j.compscitech.2016.01.017" @default.
- W2272502174 hasPublicationYear "2016" @default.
- W2272502174 type Work @default.
- W2272502174 sameAs 2272502174 @default.
- W2272502174 citedByCount "20" @default.
- W2272502174 countsByYear W22725021742016 @default.
- W2272502174 countsByYear W22725021742018 @default.
- W2272502174 countsByYear W22725021742019 @default.
- W2272502174 countsByYear W22725021742020 @default.
- W2272502174 countsByYear W22725021742021 @default.
- W2272502174 countsByYear W22725021742022 @default.
- W2272502174 countsByYear W22725021742023 @default.
- W2272502174 crossrefType "journal-article" @default.
- W2272502174 hasAuthorship W2272502174A5017940696 @default.
- W2272502174 hasAuthorship W2272502174A5039924960 @default.
- W2272502174 hasAuthorship W2272502174A5040537694 @default.
- W2272502174 hasAuthorship W2272502174A5042254301 @default.
- W2272502174 hasAuthorship W2272502174A5050241702 @default.
- W2272502174 hasAuthorship W2272502174A5088135920 @default.
- W2272502174 hasBestOaLocation W22725021742 @default.
- W2272502174 hasConcept C119599485 @default.
- W2272502174 hasConcept C127413603 @default.
- W2272502174 hasConcept C129955480 @default.
- W2272502174 hasConcept C159985019 @default.
- W2272502174 hasConcept C171359207 @default.
- W2272502174 hasConcept C192562407 @default.
- W2272502174 hasConcept C2729557 @default.
- W2272502174 hasConcept C2778958987 @default.
- W2272502174 hasConcept C2781247691 @default.
- W2272502174 hasConcept C513720949 @default.
- W2272502174 hasConcept C69990965 @default.
- W2272502174 hasConcept C92880739 @default.
- W2272502174 hasConceptScore W2272502174C119599485 @default.
- W2272502174 hasConceptScore W2272502174C127413603 @default.
- W2272502174 hasConceptScore W2272502174C129955480 @default.
- W2272502174 hasConceptScore W2272502174C159985019 @default.
- W2272502174 hasConceptScore W2272502174C171359207 @default.
- W2272502174 hasConceptScore W2272502174C192562407 @default.
- W2272502174 hasConceptScore W2272502174C2729557 @default.