Matches in SemOpenAlex for { <https://semopenalex.org/work/W2272696989> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2272696989 endingPage "511" @default.
- W2272696989 startingPage "510" @default.
- W2272696989 abstract "Neural network approach has been massively used in regression problem. However, collected data for training often include outliers which affect the final results. In this paper, we propose a new approach for outlier elimination in regression based on the extreme learning machine (ELM) called two-stage ELM. Training process consists of two stages. In the first stage, the single-hidden layer feed forward neural network (SLFN) is trained based on the ELM algorithm using the whole of training set. The trained SLFN is used to verify training patterns. Patterns corresponding to the outputs exceeding a rejection threshold are removed from the training set. Finally, the remainder of training set is used to train the SLFN again based on the ELM algorithm. One interesting observation is that, our approach is simple to detect and eliminate outliers and it can be able to deliver lower error than that of the normal ELM with fast learning speed if there exist outliers in the training set." @default.
- W2272696989 created "2016-06-24" @default.
- W2272696989 creator A5048415094 @default.
- W2272696989 creator A5072025715 @default.
- W2272696989 date "2007-07-01" @default.
- W2272696989 modified "2023-09-23" @default.
- W2272696989 title "Two-Stage Extreme Learning Machine for SLFNs in Regression" @default.
- W2272696989 hasPublicationYear "2007" @default.
- W2272696989 type Work @default.
- W2272696989 sameAs 2272696989 @default.
- W2272696989 citedByCount "0" @default.
- W2272696989 crossrefType "journal-article" @default.
- W2272696989 hasAuthorship W2272696989A5048415094 @default.
- W2272696989 hasAuthorship W2272696989A5072025715 @default.
- W2272696989 hasConcept C105795698 @default.
- W2272696989 hasConcept C111919701 @default.
- W2272696989 hasConcept C119857082 @default.
- W2272696989 hasConcept C121332964 @default.
- W2272696989 hasConcept C153180895 @default.
- W2272696989 hasConcept C153294291 @default.
- W2272696989 hasConcept C154945302 @default.
- W2272696989 hasConcept C177264268 @default.
- W2272696989 hasConcept C199360897 @default.
- W2272696989 hasConcept C2777211547 @default.
- W2272696989 hasConcept C2780150128 @default.
- W2272696989 hasConcept C33923547 @default.
- W2272696989 hasConcept C41008148 @default.
- W2272696989 hasConcept C50644808 @default.
- W2272696989 hasConcept C51632099 @default.
- W2272696989 hasConcept C58489278 @default.
- W2272696989 hasConcept C79337645 @default.
- W2272696989 hasConcept C83546350 @default.
- W2272696989 hasConcept C98045186 @default.
- W2272696989 hasConceptScore W2272696989C105795698 @default.
- W2272696989 hasConceptScore W2272696989C111919701 @default.
- W2272696989 hasConceptScore W2272696989C119857082 @default.
- W2272696989 hasConceptScore W2272696989C121332964 @default.
- W2272696989 hasConceptScore W2272696989C153180895 @default.
- W2272696989 hasConceptScore W2272696989C153294291 @default.
- W2272696989 hasConceptScore W2272696989C154945302 @default.
- W2272696989 hasConceptScore W2272696989C177264268 @default.
- W2272696989 hasConceptScore W2272696989C199360897 @default.
- W2272696989 hasConceptScore W2272696989C2777211547 @default.
- W2272696989 hasConceptScore W2272696989C2780150128 @default.
- W2272696989 hasConceptScore W2272696989C33923547 @default.
- W2272696989 hasConceptScore W2272696989C41008148 @default.
- W2272696989 hasConceptScore W2272696989C50644808 @default.
- W2272696989 hasConceptScore W2272696989C51632099 @default.
- W2272696989 hasConceptScore W2272696989C58489278 @default.
- W2272696989 hasConceptScore W2272696989C79337645 @default.
- W2272696989 hasConceptScore W2272696989C83546350 @default.
- W2272696989 hasConceptScore W2272696989C98045186 @default.
- W2272696989 hasLocation W22726969891 @default.
- W2272696989 hasOpenAccess W2272696989 @default.
- W2272696989 hasPrimaryLocation W22726969891 @default.
- W2272696989 hasRelatedWork W1495384198 @default.
- W2272696989 hasRelatedWork W1550998911 @default.
- W2272696989 hasRelatedWork W1631101671 @default.
- W2272696989 hasRelatedWork W1789923131 @default.
- W2272696989 hasRelatedWork W1830877968 @default.
- W2272696989 hasRelatedWork W2053905582 @default.
- W2272696989 hasRelatedWork W2124331144 @default.
- W2272696989 hasRelatedWork W2204166923 @default.
- W2272696989 hasRelatedWork W2264141680 @default.
- W2272696989 hasRelatedWork W2386232599 @default.
- W2272696989 hasRelatedWork W2767061690 @default.
- W2272696989 hasRelatedWork W2895558795 @default.
- W2272696989 hasRelatedWork W2901665762 @default.
- W2272696989 hasRelatedWork W2927683843 @default.
- W2272696989 hasRelatedWork W2971843567 @default.
- W2272696989 hasRelatedWork W2997830311 @default.
- W2272696989 hasRelatedWork W3120411294 @default.
- W2272696989 hasRelatedWork W3141765600 @default.
- W2272696989 hasRelatedWork W54626961 @default.
- W2272696989 hasRelatedWork W2931786702 @default.
- W2272696989 isParatext "false" @default.
- W2272696989 isRetracted "false" @default.
- W2272696989 magId "2272696989" @default.
- W2272696989 workType "article" @default.