Matches in SemOpenAlex for { <https://semopenalex.org/work/W2273115195> ?p ?o ?g. }
- W2273115195 endingPage "448" @default.
- W2273115195 startingPage "405" @default.
- W2273115195 abstract "With different genomes available, unsupervised learning algorithms are essential in learning genome-wide biological insights. Especially, the functional characterization of different genomes is essential for us to understand lives. In this chapter, we review the state-of-the-art unsupervised learning algorithms for genome informatics from DNA to MicroRNA. DNA (DeoxyriboNucleic Acid) is the basic component of genomes. A significant fraction of DNA regions (transcription factor binding sites) are bound by proteins (transcription factors) to regulate gene expression at different development stages in different tissues. To fully understand genetics, it is necessary to apply unsupervised learning algorithms to learn and infer those DNA regions. Here we review several unsupervised learning methods for deciphering the genome-wide patterns of those DNA regions. MicroRNA (miRNA), a class of small endogenous noncoding RNA (RiboNucleic acid) species, regulate gene expression post-transcriptionally by forming imperfect base-pair with the target sites primarily at the $$3^{{prime}}$$ untranslated regions of the messenger RNAs. Since the discovery of the first miRNA let-7 in worms, a vast amount of studies have been dedicated to functionally characterizing the functional impacts of miRNA in a network context to understand complex diseases such as cancer. Here we review several representative unsupervised learning frameworks on inferring miRNA regulatory network by exploiting the static sequence-based information pertinent to the prior knowledge of miRNA targeting and the dynamic information of miRNA activities implicated by the recently available large data compendia, which interrogate genome-wide expression profiles of miRNAs and/or mRNAs across various cell conditions." @default.
- W2273115195 created "2016-06-24" @default.
- W2273115195 creator A5009847434 @default.
- W2273115195 creator A5039193398 @default.
- W2273115195 creator A5044367029 @default.
- W2273115195 date "2016-01-01" @default.
- W2273115195 modified "2023-10-13" @default.
- W2273115195 title "Unsupervised Learning in Genome Informatics" @default.
- W2273115195 cites W131335472 @default.
- W2273115195 cites W1494075612 @default.
- W2273115195 cites W176614359 @default.
- W2273115195 cites W1873501834 @default.
- W2273115195 cites W1893438027 @default.
- W2273115195 cites W1902027874 @default.
- W2273115195 cites W1965267927 @default.
- W2273115195 cites W1967656072 @default.
- W2273115195 cites W1968421082 @default.
- W2273115195 cites W1969025017 @default.
- W2273115195 cites W1970739476 @default.
- W2273115195 cites W1971403296 @default.
- W2273115195 cites W1972785590 @default.
- W2273115195 cites W1975981804 @default.
- W2273115195 cites W1976093396 @default.
- W2273115195 cites W1976148686 @default.
- W2273115195 cites W1978337436 @default.
- W2273115195 cites W1979440007 @default.
- W2273115195 cites W1980389572 @default.
- W2273115195 cites W1983804343 @default.
- W2273115195 cites W1984001597 @default.
- W2273115195 cites W1984053739 @default.
- W2273115195 cites W1987122345 @default.
- W2273115195 cites W1989080074 @default.
- W2273115195 cites W1989493946 @default.
- W2273115195 cites W1994122295 @default.
- W2273115195 cites W1994251758 @default.
- W2273115195 cites W1996212302 @default.
- W2273115195 cites W1999064315 @default.
- W2273115195 cites W2001554877 @default.
- W2273115195 cites W2003967338 @default.
- W2273115195 cites W2005244073 @default.
- W2273115195 cites W2006399408 @default.
- W2273115195 cites W2007490029 @default.
- W2273115195 cites W2008945738 @default.
- W2273115195 cites W2013336813 @default.
- W2273115195 cites W2013449615 @default.
- W2273115195 cites W2020469175 @default.
- W2273115195 cites W2023825334 @default.
- W2273115195 cites W2024665422 @default.
- W2273115195 cites W2025183726 @default.
- W2273115195 cites W2026074998 @default.
- W2273115195 cites W2026570544 @default.
- W2273115195 cites W2029316600 @default.
- W2273115195 cites W2032200433 @default.
- W2273115195 cites W2032231928 @default.
- W2273115195 cites W2032386102 @default.
- W2273115195 cites W2032395102 @default.
- W2273115195 cites W2034206030 @default.
- W2273115195 cites W2037652809 @default.
- W2273115195 cites W2040191060 @default.
- W2273115195 cites W2041726559 @default.
- W2273115195 cites W2042392223 @default.
- W2273115195 cites W2042898046 @default.
- W2273115195 cites W2044164623 @default.
- W2273115195 cites W2046374070 @default.
- W2273115195 cites W2048741221 @default.
- W2273115195 cites W2050869737 @default.
- W2273115195 cites W2053613497 @default.
- W2273115195 cites W2055043387 @default.
- W2273115195 cites W2055801225 @default.
- W2273115195 cites W2059073003 @default.
- W2273115195 cites W2059125944 @default.
- W2273115195 cites W2062237921 @default.
- W2273115195 cites W2064690543 @default.
- W2273115195 cites W2067188495 @default.
- W2273115195 cites W2070571588 @default.
- W2273115195 cites W2074182576 @default.
- W2273115195 cites W2075110522 @default.
- W2273115195 cites W2077327925 @default.
- W2273115195 cites W2079321730 @default.
- W2273115195 cites W2080099205 @default.
- W2273115195 cites W2081076969 @default.
- W2273115195 cites W2082565035 @default.
- W2273115195 cites W2083381199 @default.
- W2273115195 cites W2086561953 @default.
- W2273115195 cites W2089142809 @default.
- W2273115195 cites W2089783852 @default.
- W2273115195 cites W2090219560 @default.
- W2273115195 cites W2092904290 @default.
- W2273115195 cites W2095617232 @default.
- W2273115195 cites W2096791516 @default.
- W2273115195 cites W2098044274 @default.
- W2273115195 cites W2098513996 @default.
- W2273115195 cites W2098979213 @default.
- W2273115195 cites W2099922553 @default.
- W2273115195 cites W2101835893 @default.
- W2273115195 cites W2102904139 @default.
- W2273115195 cites W2103882919 @default.
- W2273115195 cites W2104262114 @default.