Matches in SemOpenAlex for { <https://semopenalex.org/work/W2273128077> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2273128077 endingPage "157" @default.
- W2273128077 startingPage "157" @default.
- W2273128077 abstract "Internet traffic contains a rich set of periodic patterns. Examples include regular packet transmissions along bottleneck links, periodic routing information exchange, and periodicities inside Denial-of-Service attack streams. Analyzing such periodic patterns has wide applications, including a better understanding of network traffic dynamics, diagnosis of network anomalies, and detection of Denial-of-Service attacks. However, current understanding of periodic behavior in aggregate traffic is quite limited. Many previous approaches often analyze traffic on a per-flow basis, and are not suited to analyze high speed aggregate traffic. In addition, a number of approaches only indicate that they may reveal periodic patterns, but fall short of proposing automatic detection algorithms and quantitatively evaluating their performance. This thesis explores the application of spectral and statistical methods to detect periodic patterns in Internet traffic. In our approach we first apply spectral techniques to obtain the traffic spectrum, and then use algorithms based on rigorous statistical methods to automatically detect periodic patterns from the traffic spectrum. One salient feature of our approach is that it operates at the aggregate traffic level and does not require flow separation. We first carry out controlled lab experiments to demonstrate the spectral characteristics of various periodic patterns. We then propose four non-parametric detection algorithms and evaluate their performance using real-world Internet traffic. Results show that one of them, the Top-Frequency Algorithm, is the best choice in terms of detection performance and algorithm simplicity. It can provide excellent accuracy (up to 95%) for detecting the periodic pattern caused a bottleneck link even when the traffic through the bottleneck accounts for less than 10% of the aggregate traffic observed at the monitoring point. We also investigate two extensions to our algorithms. The first one is to utilize harmonics, and the second one is to have parametric detection that considers the variation of traffic spectra according to other factors, such as traffic volume. Evaluation results show that we can get significant improvement by considering harmonics for traffic similar to the training data and marginal improvement by considering traffic volume for parametric detection." @default.
- W2273128077 created "2016-06-24" @default.
- W2273128077 creator A5008219533 @default.
- W2273128077 creator A5016352640 @default.
- W2273128077 creator A5090014731 @default.
- W2273128077 date "2006-01-01" @default.
- W2273128077 modified "2023-09-23" @default.
- W2273128077 title "Detecting periodic patterns in internet traffic with spectral and statistical methods" @default.
- W2273128077 hasPublicationYear "2006" @default.
- W2273128077 type Work @default.
- W2273128077 sameAs 2273128077 @default.
- W2273128077 citedByCount "3" @default.
- W2273128077 crossrefType "journal-article" @default.
- W2273128077 hasAuthorship W2273128077A5008219533 @default.
- W2273128077 hasAuthorship W2273128077A5016352640 @default.
- W2273128077 hasAuthorship W2273128077A5090014731 @default.
- W2273128077 hasConcept C110875604 @default.
- W2273128077 hasConcept C11413529 @default.
- W2273128077 hasConcept C124101348 @default.
- W2273128077 hasConcept C136764020 @default.
- W2273128077 hasConcept C149635348 @default.
- W2273128077 hasConcept C158379750 @default.
- W2273128077 hasConcept C159985019 @default.
- W2273128077 hasConcept C192562407 @default.
- W2273128077 hasConcept C2780513914 @default.
- W2273128077 hasConcept C31258907 @default.
- W2273128077 hasConcept C38822068 @default.
- W2273128077 hasConcept C41008148 @default.
- W2273128077 hasConcept C4679612 @default.
- W2273128077 hasConcept C63969886 @default.
- W2273128077 hasConcept C79403827 @default.
- W2273128077 hasConceptScore W2273128077C110875604 @default.
- W2273128077 hasConceptScore W2273128077C11413529 @default.
- W2273128077 hasConceptScore W2273128077C124101348 @default.
- W2273128077 hasConceptScore W2273128077C136764020 @default.
- W2273128077 hasConceptScore W2273128077C149635348 @default.
- W2273128077 hasConceptScore W2273128077C158379750 @default.
- W2273128077 hasConceptScore W2273128077C159985019 @default.
- W2273128077 hasConceptScore W2273128077C192562407 @default.
- W2273128077 hasConceptScore W2273128077C2780513914 @default.
- W2273128077 hasConceptScore W2273128077C31258907 @default.
- W2273128077 hasConceptScore W2273128077C38822068 @default.
- W2273128077 hasConceptScore W2273128077C41008148 @default.
- W2273128077 hasConceptScore W2273128077C4679612 @default.
- W2273128077 hasConceptScore W2273128077C63969886 @default.
- W2273128077 hasConceptScore W2273128077C79403827 @default.
- W2273128077 hasLocation W22731280771 @default.
- W2273128077 hasOpenAccess W2273128077 @default.
- W2273128077 hasPrimaryLocation W22731280771 @default.
- W2273128077 hasRelatedWork W1526715520 @default.
- W2273128077 hasRelatedWork W2014320386 @default.
- W2273128077 hasRelatedWork W2019853444 @default.
- W2273128077 hasRelatedWork W2044177275 @default.
- W2273128077 hasRelatedWork W2057331964 @default.
- W2273128077 hasRelatedWork W2062104895 @default.
- W2273128077 hasRelatedWork W2140437701 @default.
- W2273128077 hasRelatedWork W2144191842 @default.
- W2273128077 hasRelatedWork W2155378174 @default.
- W2273128077 hasRelatedWork W2167810008 @default.
- W2273128077 hasRelatedWork W2332284185 @default.
- W2273128077 hasRelatedWork W2360217616 @default.
- W2273128077 hasRelatedWork W2466956299 @default.
- W2273128077 hasRelatedWork W2542194338 @default.
- W2273128077 hasRelatedWork W2550908003 @default.
- W2273128077 hasRelatedWork W2570212500 @default.
- W2273128077 hasRelatedWork W2594619457 @default.
- W2273128077 hasRelatedWork W3091240513 @default.
- W2273128077 hasRelatedWork W3105069392 @default.
- W2273128077 hasRelatedWork W93745829 @default.
- W2273128077 isParatext "false" @default.
- W2273128077 isRetracted "false" @default.
- W2273128077 magId "2273128077" @default.
- W2273128077 workType "article" @default.