Matches in SemOpenAlex for { <https://semopenalex.org/work/W2273141632> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2273141632 abstract "We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic." @default.
- W2273141632 created "2016-06-24" @default.
- W2273141632 creator A5004184725 @default.
- W2273141632 date "1992-08-01" @default.
- W2273141632 modified "2023-09-27" @default.
- W2273141632 title "Characterizations of Some Combinatorial Geometries" @default.
- W2273141632 hasPublicationYear "1992" @default.
- W2273141632 type Work @default.
- W2273141632 sameAs 2273141632 @default.
- W2273141632 citedByCount "1" @default.
- W2273141632 crossrefType "dissertation" @default.
- W2273141632 hasAuthorship W2273141632A5004184725 @default.
- W2273141632 hasConcept C114614502 @default.
- W2273141632 hasConcept C120665830 @default.
- W2273141632 hasConcept C121332964 @default.
- W2273141632 hasConcept C199360897 @default.
- W2273141632 hasConcept C2524010 @default.
- W2273141632 hasConcept C2780841128 @default.
- W2273141632 hasConcept C33923547 @default.
- W2273141632 hasConcept C41008148 @default.
- W2273141632 hasConcept C42812 @default.
- W2273141632 hasConcept C64452783 @default.
- W2273141632 hasConcept C66882249 @default.
- W2273141632 hasConceptScore W2273141632C114614502 @default.
- W2273141632 hasConceptScore W2273141632C120665830 @default.
- W2273141632 hasConceptScore W2273141632C121332964 @default.
- W2273141632 hasConceptScore W2273141632C199360897 @default.
- W2273141632 hasConceptScore W2273141632C2524010 @default.
- W2273141632 hasConceptScore W2273141632C2780841128 @default.
- W2273141632 hasConceptScore W2273141632C33923547 @default.
- W2273141632 hasConceptScore W2273141632C41008148 @default.
- W2273141632 hasConceptScore W2273141632C42812 @default.
- W2273141632 hasConceptScore W2273141632C64452783 @default.
- W2273141632 hasConceptScore W2273141632C66882249 @default.
- W2273141632 hasLocation W22731416321 @default.
- W2273141632 hasOpenAccess W2273141632 @default.
- W2273141632 hasPrimaryLocation W22731416321 @default.
- W2273141632 hasRelatedWork W1555973576 @default.
- W2273141632 hasRelatedWork W1966380219 @default.
- W2273141632 hasRelatedWork W1987739464 @default.
- W2273141632 hasRelatedWork W2024448546 @default.
- W2273141632 hasRelatedWork W2027144956 @default.
- W2273141632 hasRelatedWork W2043066713 @default.
- W2273141632 hasRelatedWork W2117072157 @default.
- W2273141632 hasRelatedWork W2121165040 @default.
- W2273141632 hasRelatedWork W2150710569 @default.
- W2273141632 hasRelatedWork W2152407290 @default.
- W2273141632 hasRelatedWork W2200587130 @default.
- W2273141632 hasRelatedWork W2312045302 @default.
- W2273141632 hasRelatedWork W2765824231 @default.
- W2273141632 hasRelatedWork W2898514750 @default.
- W2273141632 hasRelatedWork W2949071579 @default.
- W2273141632 hasRelatedWork W2949104324 @default.
- W2273141632 hasRelatedWork W2950677288 @default.
- W2273141632 hasRelatedWork W2953057489 @default.
- W2273141632 hasRelatedWork W3104717910 @default.
- W2273141632 hasRelatedWork W3157729553 @default.
- W2273141632 isParatext "false" @default.
- W2273141632 isRetracted "false" @default.
- W2273141632 magId "2273141632" @default.
- W2273141632 workType "dissertation" @default.