Matches in SemOpenAlex for { <https://semopenalex.org/work/W2273209461> ?p ?o ?g. }
- W2273209461 abstract "The finite element method (FEM) is a widely used numerical technique for solution of boundary value problems arising in engineering applications. FEM is well studied and has several advantages; however the stress and strain solutions obtained by FEM are discontinuous across element boundaries and require smoothing algorithms to make the stress/strain appear smooth in the analysis domain. Automatic mesh generation is still a difficult task in FEM for complicated geometries and often requires user intervention for generating quality meshes. Finite elements based on uniform B-spline basis functions defined on a structured grid are developed which provide at least continuous solution through out the analysis domain. Numerical techniques are presented in this work based on structured grids and implicit equations of the boundaries of analysis domain, material interface boundaries or coarse/fine grid interfaces for solution of various engineering boundary value problems. Solution structures are constructed using approximate Heaviside step functions for imposition of Dirichlet boundary conditions, treatment of material discontinuity to perform micromechanical analysis and for local refinement of grid. The use of structured grid eliminates the need for constructing a conforming mesh and results in significant savings of time in pre-processing stage of the design cycle. Numerical examples are presented to demonstrate the performance of B-spline elements. The results are compared with analytical solutions as well as traditional finite element solutions to demonstrate the ability of B-spline elements to represent continuous stress and strain through out analysis domain. Convergence studies show that B-spline elements can provide accurate solutions for many engineering problems with fewer numbers of elements and nodes as compared to traditional FEM. Solution structure for treatment of material boundary is validated by performing a convergence analysis on a problem involving circular inclusion in a square matrix and by determining effective properties of fiber reinforced composite. Solution structure for local grid refinement is validated by analyzing classical stress concentration problems. ( en )" @default.
- W2273209461 created "2016-06-24" @default.
- W2273209461 creator A5085588880 @default.
- W2273209461 date "2008-01-01" @default.
- W2273209461 modified "2023-09-27" @default.
- W2273209461 title "Finite element analysis using uniform B -spline approximation and implicit boundary method" @default.
- W2273209461 cites W1495295109 @default.
- W2273209461 cites W1523469794 @default.
- W2273209461 cites W1551542124 @default.
- W2273209461 cites W1563216406 @default.
- W2273209461 cites W1591608973 @default.
- W2273209461 cites W1879712795 @default.
- W2273209461 cites W1964745600 @default.
- W2273209461 cites W1966321067 @default.
- W2273209461 cites W1968757949 @default.
- W2273209461 cites W1973680565 @default.
- W2273209461 cites W1975248355 @default.
- W2273209461 cites W1975885358 @default.
- W2273209461 cites W1977843797 @default.
- W2273209461 cites W1980606311 @default.
- W2273209461 cites W1981036623 @default.
- W2273209461 cites W1991359259 @default.
- W2273209461 cites W1991426482 @default.
- W2273209461 cites W1993064841 @default.
- W2273209461 cites W1997285903 @default.
- W2273209461 cites W1998142292 @default.
- W2273209461 cites W1998745245 @default.
- W2273209461 cites W2000425991 @default.
- W2273209461 cites W2009004578 @default.
- W2273209461 cites W2009846071 @default.
- W2273209461 cites W2014199320 @default.
- W2273209461 cites W2014730252 @default.
- W2273209461 cites W2023295464 @default.
- W2273209461 cites W2023582412 @default.
- W2273209461 cites W2024218215 @default.
- W2273209461 cites W2025767647 @default.
- W2273209461 cites W2027159332 @default.
- W2273209461 cites W2030851760 @default.
- W2273209461 cites W2031794361 @default.
- W2273209461 cites W2032899648 @default.
- W2273209461 cites W2034340610 @default.
- W2273209461 cites W2041657927 @default.
- W2273209461 cites W2045109388 @default.
- W2273209461 cites W2048069593 @default.
- W2273209461 cites W2051257716 @default.
- W2273209461 cites W2054049496 @default.
- W2273209461 cites W2056364361 @default.
- W2273209461 cites W2057864043 @default.
- W2273209461 cites W2059959148 @default.
- W2273209461 cites W2062335567 @default.
- W2273209461 cites W2071875410 @default.
- W2273209461 cites W2075958973 @default.
- W2273209461 cites W2079976883 @default.
- W2273209461 cites W2080788592 @default.
- W2273209461 cites W2080977367 @default.
- W2273209461 cites W2081979008 @default.
- W2273209461 cites W2082919325 @default.
- W2273209461 cites W2086751085 @default.
- W2273209461 cites W2087150992 @default.
- W2273209461 cites W2092011174 @default.
- W2273209461 cites W2093576171 @default.
- W2273209461 cites W2093834886 @default.
- W2273209461 cites W2097698547 @default.
- W2273209461 cites W2101121254 @default.
- W2273209461 cites W2108406576 @default.
- W2273209461 cites W2115594660 @default.
- W2273209461 cites W2131423403 @default.
- W2273209461 cites W2142136198 @default.
- W2273209461 cites W2151793763 @default.
- W2273209461 cites W2152945238 @default.
- W2273209461 cites W2156422757 @default.
- W2273209461 cites W2156930743 @default.
- W2273209461 cites W2164198385 @default.
- W2273209461 cites W2166405181 @default.
- W2273209461 cites W2336918561 @default.
- W2273209461 cites W2591181672 @default.
- W2273209461 hasPublicationYear "2008" @default.
- W2273209461 type Work @default.
- W2273209461 sameAs 2273209461 @default.
- W2273209461 citedByCount "0" @default.
- W2273209461 crossrefType "journal-article" @default.
- W2273209461 hasAuthorship W2273209461A5085588880 @default.
- W2273209461 hasConcept C127413603 @default.
- W2273209461 hasConcept C134306372 @default.
- W2273209461 hasConcept C135628077 @default.
- W2273209461 hasConcept C181145010 @default.
- W2273209461 hasConcept C182310444 @default.
- W2273209461 hasConcept C187691185 @default.
- W2273209461 hasConcept C24810621 @default.
- W2273209461 hasConcept C2524010 @default.
- W2273209461 hasConcept C28826006 @default.
- W2273209461 hasConcept C31972630 @default.
- W2273209461 hasConcept C33923547 @default.
- W2273209461 hasConcept C3770464 @default.
- W2273209461 hasConcept C41008148 @default.
- W2273209461 hasConcept C48395688 @default.
- W2273209461 hasConcept C52890695 @default.
- W2273209461 hasConcept C63632240 @default.
- W2273209461 hasConcept C66938386 @default.
- W2273209461 hasConceptScore W2273209461C127413603 @default.