Matches in SemOpenAlex for { <https://semopenalex.org/work/W2273787639> ?p ?o ?g. }
- W2273787639 endingPage "79" @default.
- W2273787639 startingPage "69" @default.
- W2273787639 abstract "Kernel matrix optimization (KMO) aims at learning appropriate kernel matrices by solving a certain optimization problem rather than using empirical kernel functions. Since KMO is difficult to compute out-of-sample projections for kernel subspace learning, we propose a kernel propagation strategy (KPS) based on data distribution similar principle to effectively extract out-of-sample low-dimensional features for subspace learning with KMO. With KPS, we further present an example algorithm, i.e., kernel propagation canonical correlation analysis (KPCCA), which naturally fuses semi-supervised kernel matrix learning and canonical correlation analysis by means of kernel propagation projections. In KPCCA, the extracted correlation features of out-of-sample data not only incorporate integral data distribution information but also supervised information. Extensive experimental results have demonstrated the superior performance of our proposed method." @default.
- W2273787639 created "2016-06-24" @default.
- W2273787639 creator A5053094672 @default.
- W2273787639 creator A5055757510 @default.
- W2273787639 creator A5091010251 @default.
- W2273787639 date "2016-04-01" @default.
- W2273787639 modified "2023-10-16" @default.
- W2273787639 title "Kernel propagation strategy: A novel out-of-sample propagation projection for subspace learning" @default.
- W2273787639 cites W1554864290 @default.
- W2273787639 cites W1797441772 @default.
- W2273787639 cites W1965913815 @default.
- W2273787639 cites W1967073510 @default.
- W2273787639 cites W1976890321 @default.
- W2273787639 cites W1984953230 @default.
- W2273787639 cites W1986988203 @default.
- W2273787639 cites W1991189025 @default.
- W2273787639 cites W1999613943 @default.
- W2273787639 cites W2011390239 @default.
- W2273787639 cites W2017588182 @default.
- W2273787639 cites W2025341678 @default.
- W2273787639 cites W2033823371 @default.
- W2273787639 cites W2036303021 @default.
- W2273787639 cites W2041713290 @default.
- W2273787639 cites W2042683698 @default.
- W2273787639 cites W2048857329 @default.
- W2273787639 cites W2049458636 @default.
- W2273787639 cites W2081863860 @default.
- W2273787639 cites W2083095455 @default.
- W2273787639 cites W2085262125 @default.
- W2273787639 cites W2100235303 @default.
- W2273787639 cites W2100560442 @default.
- W2273787639 cites W2103788722 @default.
- W2273787639 cites W2117553576 @default.
- W2273787639 cites W2121647436 @default.
- W2273787639 cites W2138451337 @default.
- W2273787639 cites W2140095548 @default.
- W2273787639 cites W2151317568 @default.
- W2273787639 cites W2397674542 @default.
- W2273787639 cites W3148981562 @default.
- W2273787639 doi "https://doi.org/10.1016/j.jvcir.2016.01.007" @default.
- W2273787639 hasPublicationYear "2016" @default.
- W2273787639 type Work @default.
- W2273787639 sameAs 2273787639 @default.
- W2273787639 citedByCount "6" @default.
- W2273787639 countsByYear W22737876392016 @default.
- W2273787639 countsByYear W22737876392018 @default.
- W2273787639 countsByYear W22737876392019 @default.
- W2273787639 countsByYear W22737876392020 @default.
- W2273787639 countsByYear W22737876392021 @default.
- W2273787639 countsByYear W22737876392022 @default.
- W2273787639 crossrefType "journal-article" @default.
- W2273787639 hasAuthorship W2273787639A5053094672 @default.
- W2273787639 hasAuthorship W2273787639A5055757510 @default.
- W2273787639 hasAuthorship W2273787639A5091010251 @default.
- W2273787639 hasBestOaLocation W22737876391 @default.
- W2273787639 hasConcept C11413529 @default.
- W2273787639 hasConcept C114614502 @default.
- W2273787639 hasConcept C122280245 @default.
- W2273787639 hasConcept C12267149 @default.
- W2273787639 hasConcept C134517425 @default.
- W2273787639 hasConcept C140417398 @default.
- W2273787639 hasConcept C153180895 @default.
- W2273787639 hasConcept C153874254 @default.
- W2273787639 hasConcept C154945302 @default.
- W2273787639 hasConcept C160446489 @default.
- W2273787639 hasConcept C182335926 @default.
- W2273787639 hasConcept C195699287 @default.
- W2273787639 hasConcept C32834561 @default.
- W2273787639 hasConcept C33923547 @default.
- W2273787639 hasConcept C41008148 @default.
- W2273787639 hasConcept C57493831 @default.
- W2273787639 hasConcept C74193536 @default.
- W2273787639 hasConcept C75866337 @default.
- W2273787639 hasConceptScore W2273787639C11413529 @default.
- W2273787639 hasConceptScore W2273787639C114614502 @default.
- W2273787639 hasConceptScore W2273787639C122280245 @default.
- W2273787639 hasConceptScore W2273787639C12267149 @default.
- W2273787639 hasConceptScore W2273787639C134517425 @default.
- W2273787639 hasConceptScore W2273787639C140417398 @default.
- W2273787639 hasConceptScore W2273787639C153180895 @default.
- W2273787639 hasConceptScore W2273787639C153874254 @default.
- W2273787639 hasConceptScore W2273787639C154945302 @default.
- W2273787639 hasConceptScore W2273787639C160446489 @default.
- W2273787639 hasConceptScore W2273787639C182335926 @default.
- W2273787639 hasConceptScore W2273787639C195699287 @default.
- W2273787639 hasConceptScore W2273787639C32834561 @default.
- W2273787639 hasConceptScore W2273787639C33923547 @default.
- W2273787639 hasConceptScore W2273787639C41008148 @default.
- W2273787639 hasConceptScore W2273787639C57493831 @default.
- W2273787639 hasConceptScore W2273787639C74193536 @default.
- W2273787639 hasConceptScore W2273787639C75866337 @default.
- W2273787639 hasFunder F4320321001 @default.
- W2273787639 hasLocation W22737876391 @default.
- W2273787639 hasOpenAccess W2273787639 @default.
- W2273787639 hasPrimaryLocation W22737876391 @default.
- W2273787639 hasRelatedWork W2027376491 @default.
- W2273787639 hasRelatedWork W2071590642 @default.
- W2273787639 hasRelatedWork W2090258569 @default.