Matches in SemOpenAlex for { <https://semopenalex.org/work/W2273920171> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2273920171 endingPage "198" @default.
- W2273920171 startingPage "198" @default.
- W2273920171 abstract "In this dissertation, we discuss a new probabilistic graphical model called the data sequence dependence model (DSDM). This model is derived from the joint probability function for a sequence of class assignments given a sequence of input symbols (words) under fewer and different conditional independence assumptions than the commonly used probabilistic graphical models, such as hidden Markov models (HMMs), maximum entropy Markov models (MEMMs), and conditional random fields (CRF s). Our model accounts for the data sequence dependency rather than the class sequence dependency. In order to find a sequence of optimal class assignments for a sequence of input symbols, the HMM and CRF models have to employ dynamic programming. In contrast to these models, our method does not need to employ dynamic programming. Although dynamic programming is an efficient optimization technique, our model leads to an algorithm whose computational complexity is less than dynamic programming and whose performance is just as good or better. Based on DSDM, we develop algorithms for identifying semantics in texts. In this research, semantics consists of three types of text patterns. They are the semantic arguments of a verb, the sense of a polysemous word, and the noun phrases of a sentence. In addition, two other probabilistic graphical models are described. They are called the context independence model (CIM) and the class sequence dependence model (CSDM). These models have the same economic gain function as DSDM. However, they are derived under the different conditional independence assumptions. Finally, statistical testing methodologies are employed to validate these models. For our task of identifying semantic patterns, we compare each pair of the models by testing the null hypothesis that the two models are equally good at identifying semantic patterns against the alternative hypothesis that one model is better able to identify semantic patterns. The resulting p-value shows that DSDM is better able to identify semantic patterns than the other models." @default.
- W2273920171 created "2016-06-24" @default.
- W2273920171 creator A5003634526 @default.
- W2273920171 creator A5087546144 @default.
- W2273920171 date "2013-01-01" @default.
- W2273920171 modified "2023-09-23" @default.
- W2273920171 title "Developing probabilistic graphical models for identifying text patterns and semantics" @default.
- W2273920171 hasPublicationYear "2013" @default.
- W2273920171 type Work @default.
- W2273920171 sameAs 2273920171 @default.
- W2273920171 citedByCount "0" @default.
- W2273920171 crossrefType "proceedings-article" @default.
- W2273920171 hasAuthorship W2273920171A5003634526 @default.
- W2273920171 hasAuthorship W2273920171A5087546144 @default.
- W2273920171 hasConcept C105795698 @default.
- W2273920171 hasConcept C119857082 @default.
- W2273920171 hasConcept C152565575 @default.
- W2273920171 hasConcept C154945302 @default.
- W2273920171 hasConcept C155846161 @default.
- W2273920171 hasConcept C163836022 @default.
- W2273920171 hasConcept C184337299 @default.
- W2273920171 hasConcept C196956702 @default.
- W2273920171 hasConcept C19768560 @default.
- W2273920171 hasConcept C199360897 @default.
- W2273920171 hasConcept C23224414 @default.
- W2273920171 hasConcept C2778112365 @default.
- W2273920171 hasConcept C33923547 @default.
- W2273920171 hasConcept C35651441 @default.
- W2273920171 hasConcept C41008148 @default.
- W2273920171 hasConcept C49937458 @default.
- W2273920171 hasConcept C54355233 @default.
- W2273920171 hasConcept C54907487 @default.
- W2273920171 hasConcept C79772020 @default.
- W2273920171 hasConcept C80444323 @default.
- W2273920171 hasConcept C86803240 @default.
- W2273920171 hasConcept C9679016 @default.
- W2273920171 hasConcept C98763669 @default.
- W2273920171 hasConceptScore W2273920171C105795698 @default.
- W2273920171 hasConceptScore W2273920171C119857082 @default.
- W2273920171 hasConceptScore W2273920171C152565575 @default.
- W2273920171 hasConceptScore W2273920171C154945302 @default.
- W2273920171 hasConceptScore W2273920171C155846161 @default.
- W2273920171 hasConceptScore W2273920171C163836022 @default.
- W2273920171 hasConceptScore W2273920171C184337299 @default.
- W2273920171 hasConceptScore W2273920171C196956702 @default.
- W2273920171 hasConceptScore W2273920171C19768560 @default.
- W2273920171 hasConceptScore W2273920171C199360897 @default.
- W2273920171 hasConceptScore W2273920171C23224414 @default.
- W2273920171 hasConceptScore W2273920171C2778112365 @default.
- W2273920171 hasConceptScore W2273920171C33923547 @default.
- W2273920171 hasConceptScore W2273920171C35651441 @default.
- W2273920171 hasConceptScore W2273920171C41008148 @default.
- W2273920171 hasConceptScore W2273920171C49937458 @default.
- W2273920171 hasConceptScore W2273920171C54355233 @default.
- W2273920171 hasConceptScore W2273920171C54907487 @default.
- W2273920171 hasConceptScore W2273920171C79772020 @default.
- W2273920171 hasConceptScore W2273920171C80444323 @default.
- W2273920171 hasConceptScore W2273920171C86803240 @default.
- W2273920171 hasConceptScore W2273920171C9679016 @default.
- W2273920171 hasConceptScore W2273920171C98763669 @default.
- W2273920171 hasLocation W22739201711 @default.
- W2273920171 hasOpenAccess W2273920171 @default.
- W2273920171 hasPrimaryLocation W22739201711 @default.
- W2273920171 hasRelatedWork W1551413707 @default.
- W2273920171 hasRelatedWork W1571067406 @default.
- W2273920171 hasRelatedWork W1602177480 @default.
- W2273920171 hasRelatedWork W1746853131 @default.
- W2273920171 hasRelatedWork W2033646521 @default.
- W2273920171 hasRelatedWork W2059802626 @default.
- W2273920171 hasRelatedWork W2064134731 @default.
- W2273920171 hasRelatedWork W2065606385 @default.
- W2273920171 hasRelatedWork W2075943043 @default.
- W2273920171 hasRelatedWork W2098073422 @default.
- W2273920171 hasRelatedWork W2099654826 @default.
- W2273920171 hasRelatedWork W2133082571 @default.
- W2273920171 hasRelatedWork W2205300701 @default.
- W2273920171 hasRelatedWork W2407110610 @default.
- W2273920171 hasRelatedWork W2465758401 @default.
- W2273920171 hasRelatedWork W2518182186 @default.
- W2273920171 hasRelatedWork W2760246441 @default.
- W2273920171 hasRelatedWork W3023867758 @default.
- W2273920171 hasRelatedWork W3088843971 @default.
- W2273920171 hasRelatedWork W3099016944 @default.
- W2273920171 isParatext "false" @default.
- W2273920171 isRetracted "false" @default.
- W2273920171 magId "2273920171" @default.
- W2273920171 workType "article" @default.