Matches in SemOpenAlex for { <https://semopenalex.org/work/W2274058249> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2274058249 endingPage "440" @default.
- W2274058249 startingPage "429" @default.
- W2274058249 abstract "A new approach to modelling human behaviour patterns in smart homes is presented.We examine detection of deviating human behaviour patterns such as falls.We analyse deviations in space, time and transitions between behaviour patterns.Spatial and temporal deviations can be found through analysis of a 2D map of data. A system for detecting deviating human behaviour in a smart home environment is the long-term goal of this work. Clearly, such systems will be very important in ambient assisted living services. A new approach to modelling human behaviour patterns is suggested in this paper. The approach reveals promising results in unsupervised modelling of human behaviour and detection of deviations by using such a model. Human behaviour/activity in a short time interval is represented in a novel fashion by responses of simple non-intrusive sensors. Deviating behaviour is revealed through data clustering and analysis of associations between clusters and data vectors representing adjacent time intervals (analysing transitions between clusters). To obtain clusters of human behaviour patterns, first, a random forest is trained without using beforehand defined teacher signals. Then information collected in the random forest data proximity matrix is mapped onto the 2D space and data clusters are revealed there by agglomerative clustering. Transitions between clusters are modelled by the third order Markov chain.Three types of deviations are considered: deviation in time, deviation in space and deviation in the transition between clusters of similar behaviour patterns.The proposed modelling approach does not make any assumptions about the position, type, and relationship of sensors but is nevertheless able to successfully create and use a model for deviation detection-this is claimed as a significant result in the area of expert and intelligent systems. Results show that spatial and temporal deviations can be revealed through analysis of a 2D map of high dimensional data. It is demonstrated that such a map is stable in terms of the number of clusters formed. We show that the data clusters can be understood/explored by finding the most important variables and by analysing the structure of the most representative tree." @default.
- W2274058249 created "2016-06-24" @default.
- W2274058249 creator A5017888883 @default.
- W2274058249 creator A5076881250 @default.
- W2274058249 creator A5087630721 @default.
- W2274058249 date "2016-08-01" @default.
- W2274058249 modified "2023-09-24" @default.
- W2274058249 title "Detecting and exploring deviating behaviour of smart home residents" @default.
- W2274058249 cites W1969338230 @default.
- W2274058249 cites W1971843485 @default.
- W2274058249 cites W1984510790 @default.
- W2274058249 cites W2003310532 @default.
- W2274058249 cites W2038577858 @default.
- W2274058249 cites W2046862111 @default.
- W2274058249 cites W2051970047 @default.
- W2274058249 cites W2054581405 @default.
- W2274058249 cites W2069098720 @default.
- W2274058249 cites W2073523114 @default.
- W2274058249 cites W2083905535 @default.
- W2274058249 cites W2083911832 @default.
- W2274058249 cites W2087540333 @default.
- W2274058249 cites W2104839600 @default.
- W2274058249 cites W2122646361 @default.
- W2274058249 cites W2141136456 @default.
- W2274058249 cites W2154887796 @default.
- W2274058249 cites W2187234830 @default.
- W2274058249 cites W2911964244 @default.
- W2274058249 cites W4244420298 @default.
- W2274058249 cites W816776785 @default.
- W2274058249 doi "https://doi.org/10.1016/j.eswa.2016.02.030" @default.
- W2274058249 hasPublicationYear "2016" @default.
- W2274058249 type Work @default.
- W2274058249 sameAs 2274058249 @default.
- W2274058249 citedByCount "34" @default.
- W2274058249 countsByYear W22740582492016 @default.
- W2274058249 countsByYear W22740582492017 @default.
- W2274058249 countsByYear W22740582492018 @default.
- W2274058249 countsByYear W22740582492019 @default.
- W2274058249 countsByYear W22740582492020 @default.
- W2274058249 countsByYear W22740582492021 @default.
- W2274058249 countsByYear W22740582492022 @default.
- W2274058249 countsByYear W22740582492023 @default.
- W2274058249 crossrefType "journal-article" @default.
- W2274058249 hasAuthorship W2274058249A5017888883 @default.
- W2274058249 hasAuthorship W2274058249A5076881250 @default.
- W2274058249 hasAuthorship W2274058249A5087630721 @default.
- W2274058249 hasConcept C41008148 @default.
- W2274058249 hasConceptScore W2274058249C41008148 @default.
- W2274058249 hasFunder F4320321759 @default.
- W2274058249 hasLocation W22740582491 @default.
- W2274058249 hasOpenAccess W2274058249 @default.
- W2274058249 hasPrimaryLocation W22740582491 @default.
- W2274058249 hasRelatedWork W2096946506 @default.
- W2274058249 hasRelatedWork W2130043461 @default.
- W2274058249 hasRelatedWork W2350741829 @default.
- W2274058249 hasRelatedWork W2358668433 @default.
- W2274058249 hasRelatedWork W2376932109 @default.
- W2274058249 hasRelatedWork W2382290278 @default.
- W2274058249 hasRelatedWork W2390279801 @default.
- W2274058249 hasRelatedWork W2748952813 @default.
- W2274058249 hasRelatedWork W2899084033 @default.
- W2274058249 hasRelatedWork W3004735627 @default.
- W2274058249 hasVolume "55" @default.
- W2274058249 isParatext "false" @default.
- W2274058249 isRetracted "false" @default.
- W2274058249 magId "2274058249" @default.
- W2274058249 workType "article" @default.