Matches in SemOpenAlex for { <https://semopenalex.org/work/W2274171621> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2274171621 abstract "Forecasting volatility of traditional financial instruments is a well known and widely addressed problem. In the past, researches addressed it by using technical and fundamental analysis. The former looks at the past price movement of a currency or a stock (their market value and trading volumes), while the latter analyses outside information which can cause fluctuations in the currency or stock value (e.g.: introducing a new product in the company can increase the value of company’s stocks, while lower rating of a country can reduce the value of its currency). The present master’s thesis focuses on the latter, i.e. fundamental analysis. Its effectiveness will be demonstrated on a fairly new and not yet well established digital currency market. The main advantage introduced by the digital currency market — in comparison with traditional financial markets — is its P2P nature. This means that every user has an insight into the entire trading process (market orders, demands, offers, transactions). Moreover, the user has access to all the information regarding the functioning of the network (computer power consumption, amount of currency in circulation, numbers of miners...).The first, introductory part of the thesis offers an overview of existing methods for predicting currency fluctuations that were adopted which mostly come from the field of trading with securities. Moreover, a rough presentation of our improvements and the advantages of the digital currency market are presented. Follows a detailed description on how the digital currency market functions: the process of transactions is described, the role of miners in the Bitcoin Network and the process of verification of users and transactions are explained, and the possibilities of trading with digital currencies are shown. In the next chapter the adopted development environment is described (how the application is built, tools that were used and libraries). The central part of the thesis demonstrates the development of our proposed method, the goal of which is to predict price movements of Bitcoin. This part is divided into three main parts: data mining, analysis of the considered data and the simulation. In the first part the web resources and methods of data collecting are defined. In the second part, an analysis of the data collected is conducted, on the basis of which only the data that could influence the value of currency is selected. Lastly, the selected data is implemented in a tool simulation which predicts currency fluctuations in which two models were applied: multiple linear regression and artificial neural network." @default.
- W2274171621 created "2016-06-24" @default.
- W2274171621 creator A5021913526 @default.
- W2274171621 date "2015-04-02" @default.
- W2274171621 modified "2023-09-26" @default.
- W2274171621 title "Using internet-based data sources for Crypto-Currency market prediction" @default.
- W2274171621 hasPublicationYear "2015" @default.
- W2274171621 type Work @default.
- W2274171621 sameAs 2274171621 @default.
- W2274171621 citedByCount "0" @default.
- W2274171621 crossrefType "dissertation" @default.
- W2274171621 hasAuthorship W2274171621A5021913526 @default.
- W2274171621 hasConcept C10138342 @default.
- W2274171621 hasConcept C106159729 @default.
- W2274171621 hasConcept C141121606 @default.
- W2274171621 hasConcept C144133560 @default.
- W2274171621 hasConcept C151730666 @default.
- W2274171621 hasConcept C162324750 @default.
- W2274171621 hasConcept C182306322 @default.
- W2274171621 hasConcept C2780299701 @default.
- W2274171621 hasConcept C2780762169 @default.
- W2274171621 hasConcept C48220719 @default.
- W2274171621 hasConcept C51926234 @default.
- W2274171621 hasConcept C536366893 @default.
- W2274171621 hasConcept C54750564 @default.
- W2274171621 hasConcept C556758197 @default.
- W2274171621 hasConcept C86803240 @default.
- W2274171621 hasConceptScore W2274171621C10138342 @default.
- W2274171621 hasConceptScore W2274171621C106159729 @default.
- W2274171621 hasConceptScore W2274171621C141121606 @default.
- W2274171621 hasConceptScore W2274171621C144133560 @default.
- W2274171621 hasConceptScore W2274171621C151730666 @default.
- W2274171621 hasConceptScore W2274171621C162324750 @default.
- W2274171621 hasConceptScore W2274171621C182306322 @default.
- W2274171621 hasConceptScore W2274171621C2780299701 @default.
- W2274171621 hasConceptScore W2274171621C2780762169 @default.
- W2274171621 hasConceptScore W2274171621C48220719 @default.
- W2274171621 hasConceptScore W2274171621C51926234 @default.
- W2274171621 hasConceptScore W2274171621C536366893 @default.
- W2274171621 hasConceptScore W2274171621C54750564 @default.
- W2274171621 hasConceptScore W2274171621C556758197 @default.
- W2274171621 hasConceptScore W2274171621C86803240 @default.
- W2274171621 hasLocation W22741716211 @default.
- W2274171621 hasOpenAccess W2274171621 @default.
- W2274171621 hasPrimaryLocation W22741716211 @default.
- W2274171621 hasRelatedWork W1014259881 @default.
- W2274171621 hasRelatedWork W1503544267 @default.
- W2274171621 hasRelatedWork W1592938963 @default.
- W2274171621 hasRelatedWork W1992994014 @default.
- W2274171621 hasRelatedWork W2073293834 @default.
- W2274171621 hasRelatedWork W2079297731 @default.
- W2274171621 hasRelatedWork W2105363896 @default.
- W2274171621 hasRelatedWork W2155646692 @default.
- W2274171621 hasRelatedWork W2164973235 @default.
- W2274171621 hasRelatedWork W2169262863 @default.
- W2274171621 hasRelatedWork W2257818248 @default.
- W2274171621 hasRelatedWork W2291399202 @default.
- W2274171621 hasRelatedWork W2607807157 @default.
- W2274171621 hasRelatedWork W2907071364 @default.
- W2274171621 hasRelatedWork W3004336731 @default.
- W2274171621 hasRelatedWork W3007242380 @default.
- W2274171621 hasRelatedWork W3089600280 @default.
- W2274171621 hasRelatedWork W3168900838 @default.
- W2274171621 hasRelatedWork W567378473 @default.
- W2274171621 hasRelatedWork W2153709063 @default.
- W2274171621 isParatext "false" @default.
- W2274171621 isRetracted "false" @default.
- W2274171621 magId "2274171621" @default.
- W2274171621 workType "dissertation" @default.