Matches in SemOpenAlex for { <https://semopenalex.org/work/W2274367037> ?p ?o ?g. }
- W2274367037 abstract "This paper presents a novel approach for efficient uncertainty quantification and propagation in multidisciplinary analysis with a large number of coupling variables. The proposed methodology has three elements: Bayesian network, copula-based sampling, and principal component analysis. The Bayesian network represents the joint distribution of multiple variables through marginal distributions and conditional probabilities, and it updates the distributions based on new data. This paper uses this concept to develop a novel approach for probabilistic multidisciplinary analysis, that is, inference of distributions of the coupling variables by enforcing the interdisciplinary compatibility condition (which is treated similar to data for updating). The Bayesian network is built using only a few iterations of the coupled multidisciplinary analysis, without iterating until convergence. A copula-based sampling technique is employed for efficient sampling from the joint and conditional distributions. Further savings ..." @default.
- W2274367037 created "2016-06-24" @default.
- W2274367037 creator A5011487190 @default.
- W2274367037 creator A5089894989 @default.
- W2274367037 date "2016-04-01" @default.
- W2274367037 modified "2023-09-27" @default.
- W2274367037 title "Stochastic Multidisciplinary Analysis with High-Dimensional Coupling" @default.
- W2274367037 cites W1965555277 @default.
- W2274367037 cites W1966450732 @default.
- W2274367037 cites W1969611726 @default.
- W2274367037 cites W1969628482 @default.
- W2274367037 cites W1972220090 @default.
- W2274367037 cites W1988459821 @default.
- W2274367037 cites W2007052787 @default.
- W2274367037 cites W2010955807 @default.
- W2274367037 cites W2011541053 @default.
- W2274367037 cites W2014373625 @default.
- W2274367037 cites W2020316368 @default.
- W2274367037 cites W2027648193 @default.
- W2274367037 cites W2035520182 @default.
- W2274367037 cites W2036066171 @default.
- W2274367037 cites W2037138174 @default.
- W2274367037 cites W2041460579 @default.
- W2274367037 cites W2042853681 @default.
- W2274367037 cites W2048876801 @default.
- W2274367037 cites W2057869439 @default.
- W2274367037 cites W2071187519 @default.
- W2274367037 cites W2090021194 @default.
- W2274367037 cites W2118873553 @default.
- W2274367037 cites W2122445765 @default.
- W2274367037 cites W2126736494 @default.
- W2274367037 cites W2147836374 @default.
- W2274367037 cites W2163402412 @default.
- W2274367037 cites W2168491582 @default.
- W2274367037 cites W2498364568 @default.
- W2274367037 cites W3178589997 @default.
- W2274367037 cites W4241861175 @default.
- W2274367037 cites W4248413884 @default.
- W2274367037 cites W2054489584 @default.
- W2274367037 doi "https://doi.org/10.2514/1.j054343" @default.
- W2274367037 hasPublicationYear "2016" @default.
- W2274367037 type Work @default.
- W2274367037 sameAs 2274367037 @default.
- W2274367037 citedByCount "14" @default.
- W2274367037 countsByYear W22743670372014 @default.
- W2274367037 countsByYear W22743670372017 @default.
- W2274367037 countsByYear W22743670372018 @default.
- W2274367037 countsByYear W22743670372020 @default.
- W2274367037 countsByYear W22743670372021 @default.
- W2274367037 countsByYear W22743670372022 @default.
- W2274367037 crossrefType "journal-article" @default.
- W2274367037 hasAuthorship W2274367037A5011487190 @default.
- W2274367037 hasAuthorship W2274367037A5089894989 @default.
- W2274367037 hasConcept C105795698 @default.
- W2274367037 hasConcept C107673813 @default.
- W2274367037 hasConcept C119857082 @default.
- W2274367037 hasConcept C122123141 @default.
- W2274367037 hasConcept C124101348 @default.
- W2274367037 hasConcept C149782125 @default.
- W2274367037 hasConcept C154945302 @default.
- W2274367037 hasConcept C165216359 @default.
- W2274367037 hasConcept C17618745 @default.
- W2274367037 hasConcept C18653775 @default.
- W2274367037 hasConcept C27438332 @default.
- W2274367037 hasConcept C2776214188 @default.
- W2274367037 hasConcept C33724603 @default.
- W2274367037 hasConcept C33923547 @default.
- W2274367037 hasConcept C41008148 @default.
- W2274367037 hasConcept C43555835 @default.
- W2274367037 hasConceptScore W2274367037C105795698 @default.
- W2274367037 hasConceptScore W2274367037C107673813 @default.
- W2274367037 hasConceptScore W2274367037C119857082 @default.
- W2274367037 hasConceptScore W2274367037C122123141 @default.
- W2274367037 hasConceptScore W2274367037C124101348 @default.
- W2274367037 hasConceptScore W2274367037C149782125 @default.
- W2274367037 hasConceptScore W2274367037C154945302 @default.
- W2274367037 hasConceptScore W2274367037C165216359 @default.
- W2274367037 hasConceptScore W2274367037C17618745 @default.
- W2274367037 hasConceptScore W2274367037C18653775 @default.
- W2274367037 hasConceptScore W2274367037C27438332 @default.
- W2274367037 hasConceptScore W2274367037C2776214188 @default.
- W2274367037 hasConceptScore W2274367037C33724603 @default.
- W2274367037 hasConceptScore W2274367037C33923547 @default.
- W2274367037 hasConceptScore W2274367037C41008148 @default.
- W2274367037 hasConceptScore W2274367037C43555835 @default.
- W2274367037 hasLocation W22743670371 @default.
- W2274367037 hasOpenAccess W2274367037 @default.
- W2274367037 hasPrimaryLocation W22743670371 @default.
- W2274367037 hasRelatedWork W1746819321 @default.
- W2274367037 hasRelatedWork W1969611726 @default.
- W2274367037 hasRelatedWork W1972883047 @default.
- W2274367037 hasRelatedWork W1973333099 @default.
- W2274367037 hasRelatedWork W1982668418 @default.
- W2274367037 hasRelatedWork W1991413021 @default.
- W2274367037 hasRelatedWork W1997416607 @default.
- W2274367037 hasRelatedWork W2006939717 @default.
- W2274367037 hasRelatedWork W2007052787 @default.
- W2274367037 hasRelatedWork W2018044188 @default.
- W2274367037 hasRelatedWork W2037138174 @default.
- W2274367037 hasRelatedWork W2047973167 @default.