Matches in SemOpenAlex for { <https://semopenalex.org/work/W2274452797> ?p ?o ?g. }
- W2274452797 endingPage "566" @default.
- W2274452797 startingPage "555" @default.
- W2274452797 abstract "Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for implementation in the ECU of a modern engine. The control strategy was validated by means of experimental tests under several operating conditions, involving both warm-up and fully warmed engine thermal states. The tests were carried out with a small displacement Spark-Ignition Engine which was equipped with an electric coolant pump, directly driven by the control algorithm. Results show that the controller is robust in terms of disturbance rejections, it respects the defined system constraints and is also very fast in terms of response to the perturbations. The experimental tests proved that the proposed control is effective in decreasing the warm-up time and in reducing the coolant flow rate under fully warmed conditions as compared to a standard configuration with pump speed proportional to engine speed. The adoption of these cooling control strategies will, therefore, result in lower fuel consumption and reduced CO2 emissions." @default.
- W2274452797 created "2016-06-24" @default.
- W2274452797 creator A5014503459 @default.
- W2274452797 creator A5036034675 @default.
- W2274452797 creator A5077283166 @default.
- W2274452797 date "2016-05-01" @default.
- W2274452797 modified "2023-09-23" @default.
- W2274452797 title "A Robust Model Predictive Control for efficient thermal management of internal combustion engines" @default.
- W2274452797 cites W100395495 @default.
- W2274452797 cites W145431039 @default.
- W2274452797 cites W1484740961 @default.
- W2274452797 cites W1578508453 @default.
- W2274452797 cites W1589357164 @default.
- W2274452797 cites W1589669789 @default.
- W2274452797 cites W1976410223 @default.
- W2274452797 cites W1987486506 @default.
- W2274452797 cites W2001149166 @default.
- W2274452797 cites W2024030054 @default.
- W2274452797 cites W2045191492 @default.
- W2274452797 cites W2063027006 @default.
- W2274452797 cites W2071411354 @default.
- W2274452797 cites W2072969994 @default.
- W2274452797 cites W2118907623 @default.
- W2274452797 cites W2156368412 @default.
- W2274452797 cites W2210116513 @default.
- W2274452797 cites W2261242133 @default.
- W2274452797 cites W2264086102 @default.
- W2274452797 cites W3033943658 @default.
- W2274452797 cites W4211147054 @default.
- W2274452797 cites W586295233 @default.
- W2274452797 doi "https://doi.org/10.1016/j.apenergy.2016.02.063" @default.
- W2274452797 hasPublicationYear "2016" @default.
- W2274452797 type Work @default.
- W2274452797 sameAs 2274452797 @default.
- W2274452797 citedByCount "29" @default.
- W2274452797 countsByYear W22744527972016 @default.
- W2274452797 countsByYear W22744527972017 @default.
- W2274452797 countsByYear W22744527972018 @default.
- W2274452797 countsByYear W22744527972019 @default.
- W2274452797 countsByYear W22744527972020 @default.
- W2274452797 countsByYear W22744527972021 @default.
- W2274452797 countsByYear W22744527972022 @default.
- W2274452797 countsByYear W22744527972023 @default.
- W2274452797 crossrefType "journal-article" @default.
- W2274452797 hasAuthorship W2274452797A5014503459 @default.
- W2274452797 hasAuthorship W2274452797A5036034675 @default.
- W2274452797 hasAuthorship W2274452797A5077283166 @default.
- W2274452797 hasConcept C105923489 @default.
- W2274452797 hasConcept C106169591 @default.
- W2274452797 hasConcept C127413603 @default.
- W2274452797 hasConcept C132646400 @default.
- W2274452797 hasConcept C146978453 @default.
- W2274452797 hasConcept C154945302 @default.
- W2274452797 hasConcept C171146098 @default.
- W2274452797 hasConcept C172205157 @default.
- W2274452797 hasConcept C178790620 @default.
- W2274452797 hasConcept C185592680 @default.
- W2274452797 hasConcept C204323151 @default.
- W2274452797 hasConcept C2775924081 @default.
- W2274452797 hasConcept C28427503 @default.
- W2274452797 hasConcept C41008148 @default.
- W2274452797 hasConcept C45882903 @default.
- W2274452797 hasConcept C47446073 @default.
- W2274452797 hasConcept C50406533 @default.
- W2274452797 hasConcept C511840579 @default.
- W2274452797 hasConcept C78519656 @default.
- W2274452797 hasConcept C91914117 @default.
- W2274452797 hasConceptScore W2274452797C105923489 @default.
- W2274452797 hasConceptScore W2274452797C106169591 @default.
- W2274452797 hasConceptScore W2274452797C127413603 @default.
- W2274452797 hasConceptScore W2274452797C132646400 @default.
- W2274452797 hasConceptScore W2274452797C146978453 @default.
- W2274452797 hasConceptScore W2274452797C154945302 @default.
- W2274452797 hasConceptScore W2274452797C171146098 @default.
- W2274452797 hasConceptScore W2274452797C172205157 @default.
- W2274452797 hasConceptScore W2274452797C178790620 @default.
- W2274452797 hasConceptScore W2274452797C185592680 @default.
- W2274452797 hasConceptScore W2274452797C204323151 @default.
- W2274452797 hasConceptScore W2274452797C2775924081 @default.
- W2274452797 hasConceptScore W2274452797C28427503 @default.
- W2274452797 hasConceptScore W2274452797C41008148 @default.
- W2274452797 hasConceptScore W2274452797C45882903 @default.
- W2274452797 hasConceptScore W2274452797C47446073 @default.
- W2274452797 hasConceptScore W2274452797C50406533 @default.
- W2274452797 hasConceptScore W2274452797C511840579 @default.
- W2274452797 hasConceptScore W2274452797C78519656 @default.
- W2274452797 hasConceptScore W2274452797C91914117 @default.
- W2274452797 hasFunder F4320320300 @default.
- W2274452797 hasLocation W22744527971 @default.
- W2274452797 hasOpenAccess W2274452797 @default.
- W2274452797 hasPrimaryLocation W22744527971 @default.
- W2274452797 hasRelatedWork W2003279871 @default.
- W2274452797 hasRelatedWork W2023301932 @default.
- W2274452797 hasRelatedWork W2029946155 @default.
- W2274452797 hasRelatedWork W2033293425 @default.
- W2274452797 hasRelatedWork W2035700688 @default.
- W2274452797 hasRelatedWork W2248560037 @default.
- W2274452797 hasRelatedWork W3193690785 @default.