Matches in SemOpenAlex for { <https://semopenalex.org/work/W2274862178> ?p ?o ?g. }
- W2274862178 abstract "Field Programmable Gate Arrays, FPGAs, since their introduction on the market presented a very innovative way of implementing hardware designs. The fundamental property of these integrated circuits is the capability of a user's customization after manufacturing. An FPGA’s general architecture is composed of configurable elements that can be programmed to implement basic combinatorial and/or sequential logic. Configurable connection architecture can wire the configurable elements to implement complex circuits. Furthermore, input/output blocks manage interfacing with the external world, giving an option to configure various voltage and communication standards. These devices offer an extreme flexibility because they can be re-programmed in the field, hence they allow to comply with new needs or to improve an existing design (or even to post-correct design errors). Circuits can be described using high-level languages without a need for a long and expensive design process to be implemented as required for ASICs. Designers can use the same development environments and description languages through different devices (of the same vendor) and for different projects, providing very short time to market. Flexibility is obtained storing the device configuration to implement a desired circuit in a configuration memory, and based on used memory technology we can identify SRAM-based FPGAs and Flash-based FPGAs.All these facts have spread FPGA use into various sectors, including harsh radiation environments and safety-critical applications. For example, in space application, their use is constantly increasing, because FPGAs can comply with increasing computational needs – image processing, telecommunication – and their re-configurability can extend an application’s lifespan.Unfortunately, a great disadvantage of these devices is their sensitivity to radiation effects. As well, technology scaling along with the introduction of new material and new embedded structures is exacerbating radiation reliability issues. A citation of Robert Baumann, fellow IEEE, clearly expresses the reliability problem related to radiation:“Soft errors induce the highest failure rate of all other reliability mechanisms combined.” Any radiation-induced effects these devices suffer depend on various factors. In particular, configuration memory technology and the technological process node. In this scenario, it is very important to understand failure modes of FPGAs to provide a more suitable mitigation technique to preserve their correct circuit functionalities.This Thesis is a studying of radiation-induced effects on FPGAs. Testing radiation sensitivity of such devices is a complex process. First, specific platforms have to be developed to monitor a device’s behavior and its implemented circuit under a radiation source. Further, data analysis is complicated by a lack of detailed physical information from manufacturers. In this work, we present complete experimental methodologies to study radiation effects on FPGAs, analyzing any induced errors and decoding affected resources.Detailed analysis of these failure modes has been carried out; in particular, this work has targeted two different FPGA technologies:•SRAM-based FPGAs, such as Xilinx Spartan-3 devices; and•Flash-based FPGAs, such as Actel ProASIC3 devices.As their names suggest, these devices use different kinds of memory to store device configuration, and hence, different phenomena affect these two FPGA families.After a review of radiation-induced events, we present an analysis of mitigation techniques at design level. In particular, we focused on Triple Modular Redundancy, TMR, and Redundant Residue Number System, RRNS, implementations in SRAM-based FPGAs. Both techniques intend to increment a design’s reliability using additional information to detect and mask faults to the external world.This presented work has been made possible thanks to collaboration with Politecnico di Torino and Universita Tor Vergata, Rome.The Thesis is organized as follows:•Chapter 1 is a brief overview of radiation and its effects on electronics;•Chapter 2 describes radiation-induced effects on SRAM-based FPGAs. In particular, irradiation experiments to understand and analyze the induced failure modes are presented. These tests have focused on Xilinx Spartan-3 devices; we have irradiated this FPGA with neutrons, heavy ions and alpha particles;•Chapter 3 presents studies on hardening-by-design techniques implemented in SRAM-based FPGAs. The impact of error accumulation in their configuration memory is analyzed on different implementations of the TMR scheme. Furthermore, a hardening technique based on modular arithmetic, RRNS, to implement a totally fault-tolerant FIR filter is presented, proving its effectiveness. Finally, a methodology to study the impact of multiple bit upsets on TMR circuits is proposed;•Chapter 4 focuses on Single Event Effects on Flash-based FPGAs. The studied event in this kind of FPGA is the Single Event Transient phenomenon. Irradiation tests to measure induced transient pulse width are presented. Further experiments to assess SET impact in real-like circuits are reported; and•Chapter 5 discusses the results gathered in this work." @default.
- W2274862178 created "2016-06-24" @default.
- W2274862178 creator A5073801973 @default.
- W2274862178 date "2010-01-28" @default.
- W2274862178 modified "2023-09-27" @default.
- W2274862178 title "Single Event Effects On FPGAs" @default.
- W2274862178 cites W1489433220 @default.
- W2274862178 cites W1504339380 @default.
- W2274862178 cites W1514256057 @default.
- W2274862178 cites W1525149062 @default.
- W2274862178 cites W1532710111 @default.
- W2274862178 cites W1620896961 @default.
- W2274862178 cites W1970885193 @default.
- W2274862178 cites W1988660655 @default.
- W2274862178 cites W1996708669 @default.
- W2274862178 cites W2007565138 @default.
- W2274862178 cites W2026074455 @default.
- W2274862178 cites W2046363763 @default.
- W2274862178 cites W2072502437 @default.
- W2274862178 cites W2088031734 @default.
- W2274862178 cites W2102841035 @default.
- W2274862178 cites W2104683489 @default.
- W2274862178 cites W2108980547 @default.
- W2274862178 cites W2111865441 @default.
- W2274862178 cites W2112241493 @default.
- W2274862178 cites W2113626924 @default.
- W2274862178 cites W2114419846 @default.
- W2274862178 cites W2120034842 @default.
- W2274862178 cites W2121941287 @default.
- W2274862178 cites W2122512228 @default.
- W2274862178 cites W2122802656 @default.
- W2274862178 cites W2122849244 @default.
- W2274862178 cites W2122995125 @default.
- W2274862178 cites W2123911691 @default.
- W2274862178 cites W2131171880 @default.
- W2274862178 cites W2134743663 @default.
- W2274862178 cites W2135227944 @default.
- W2274862178 cites W2141104383 @default.
- W2274862178 cites W2145800822 @default.
- W2274862178 cites W2148071019 @default.
- W2274862178 cites W2153079001 @default.
- W2274862178 cites W2154051034 @default.
- W2274862178 cites W2155101190 @default.
- W2274862178 cites W2163131937 @default.
- W2274862178 cites W2164236653 @default.
- W2274862178 cites W2165639089 @default.
- W2274862178 cites W2165738869 @default.
- W2274862178 cites W2167326804 @default.
- W2274862178 cites W2170472744 @default.
- W2274862178 cites W2752885492 @default.
- W2274862178 cites W29810772 @default.
- W2274862178 cites W2099569658 @default.
- W2274862178 cites W2166702167 @default.
- W2274862178 hasPublicationYear "2010" @default.
- W2274862178 type Work @default.
- W2274862178 sameAs 2274862178 @default.
- W2274862178 citedByCount "0" @default.
- W2274862178 crossrefType "journal-article" @default.
- W2274862178 hasAuthorship W2274862178A5073801973 @default.
- W2274862178 hasConcept C105795698 @default.
- W2274862178 hasConcept C111919701 @default.
- W2274862178 hasConcept C118524514 @default.
- W2274862178 hasConcept C149635348 @default.
- W2274862178 hasConcept C2776303644 @default.
- W2274862178 hasConcept C2779229675 @default.
- W2274862178 hasConcept C2780598303 @default.
- W2274862178 hasConcept C33923547 @default.
- W2274862178 hasConcept C41008148 @default.
- W2274862178 hasConcept C42935608 @default.
- W2274862178 hasConcept C9390403 @default.
- W2274862178 hasConcept C98045186 @default.
- W2274862178 hasConceptScore W2274862178C105795698 @default.
- W2274862178 hasConceptScore W2274862178C111919701 @default.
- W2274862178 hasConceptScore W2274862178C118524514 @default.
- W2274862178 hasConceptScore W2274862178C149635348 @default.
- W2274862178 hasConceptScore W2274862178C2776303644 @default.
- W2274862178 hasConceptScore W2274862178C2779229675 @default.
- W2274862178 hasConceptScore W2274862178C2780598303 @default.
- W2274862178 hasConceptScore W2274862178C33923547 @default.
- W2274862178 hasConceptScore W2274862178C41008148 @default.
- W2274862178 hasConceptScore W2274862178C42935608 @default.
- W2274862178 hasConceptScore W2274862178C9390403 @default.
- W2274862178 hasConceptScore W2274862178C98045186 @default.
- W2274862178 hasLocation W22748621781 @default.
- W2274862178 hasOpenAccess W2274862178 @default.
- W2274862178 hasPrimaryLocation W22748621781 @default.
- W2274862178 hasRelatedWork W1993303962 @default.
- W2274862178 hasRelatedWork W2010287392 @default.
- W2274862178 hasRelatedWork W2031658962 @default.
- W2274862178 hasRelatedWork W2078460474 @default.
- W2274862178 hasRelatedWork W2116158739 @default.
- W2274862178 hasRelatedWork W2126810378 @default.
- W2274862178 hasRelatedWork W2155436538 @default.
- W2274862178 hasRelatedWork W2156547554 @default.
- W2274862178 hasRelatedWork W2157091607 @default.
- W2274862178 hasRelatedWork W2157223149 @default.
- W2274862178 hasRelatedWork W2261900308 @default.
- W2274862178 hasRelatedWork W2539451024 @default.
- W2274862178 hasRelatedWork W2539818187 @default.
- W2274862178 hasRelatedWork W2571116073 @default.