Matches in SemOpenAlex for { <https://semopenalex.org/work/W227501432> ?p ?o ?g. }
- W227501432 endingPage "63" @default.
- W227501432 startingPage "48" @default.
- W227501432 abstract "We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach state-of-the-art performance, we have developed a “distillation” procedure to recursively reduce the size of an initial training set using a criterion that ensures the maximization of the information content of the selected sub-set. We demonstrate the performance of this procedure for two different computer vision problems. First, we show that distillation can be used to improve the traditional bootstrapping approach to object detection. Second, we apply distillation to a classification problem with artificial distortions. We show that in both cases, using the result of a distillation process instead of a random sub-set taken uniformly in the original sample set improves performance significantly." @default.
- W227501432 created "2016-06-24" @default.
- W227501432 creator A5008714951 @default.
- W227501432 creator A5076094010 @default.
- W227501432 date "2014-01-01" @default.
- W227501432 modified "2023-10-04" @default.
- W227501432 title "Efficient Sample Mining for Object Detection" @default.
- W227501432 cites W1574719918 @default.
- W227501432 cites W1752222541 @default.
- W227501432 cites W1988790447 @default.
- W227501432 cites W1999853363 @default.
- W227501432 cites W2024859348 @default.
- W227501432 cites W2044313232 @default.
- W227501432 cites W2118585731 @default.
- W227501432 cites W2125556102 @default.
- W227501432 cites W2157452486 @default.
- W227501432 cites W2159386181 @default.
- W227501432 cites W2161969291 @default.
- W227501432 cites W2168356304 @default.
- W227501432 cites W2170110077 @default.
- W227501432 cites W3097096317 @default.
- W227501432 hasPublicationYear "2014" @default.
- W227501432 type Work @default.
- W227501432 sameAs 227501432 @default.
- W227501432 citedByCount "5" @default.
- W227501432 countsByYear W2275014322016 @default.
- W227501432 countsByYear W2275014322018 @default.
- W227501432 countsByYear W2275014322021 @default.
- W227501432 crossrefType "proceedings-article" @default.
- W227501432 hasAuthorship W227501432A5008714951 @default.
- W227501432 hasAuthorship W227501432A5076094010 @default.
- W227501432 hasConcept C111919701 @default.
- W227501432 hasConcept C119857082 @default.
- W227501432 hasConcept C121332964 @default.
- W227501432 hasConcept C124101348 @default.
- W227501432 hasConcept C126255220 @default.
- W227501432 hasConcept C149782125 @default.
- W227501432 hasConcept C153180895 @default.
- W227501432 hasConcept C154945302 @default.
- W227501432 hasConcept C177264268 @default.
- W227501432 hasConcept C178790620 @default.
- W227501432 hasConcept C185592680 @default.
- W227501432 hasConcept C198531522 @default.
- W227501432 hasConcept C199360897 @default.
- W227501432 hasConcept C204030448 @default.
- W227501432 hasConcept C207609745 @default.
- W227501432 hasConcept C2776151529 @default.
- W227501432 hasConcept C2776330181 @default.
- W227501432 hasConcept C2778755073 @default.
- W227501432 hasConcept C2781238097 @default.
- W227501432 hasConcept C33923547 @default.
- W227501432 hasConcept C41008148 @default.
- W227501432 hasConcept C43617362 @default.
- W227501432 hasConcept C62520636 @default.
- W227501432 hasConcept C98045186 @default.
- W227501432 hasConceptScore W227501432C111919701 @default.
- W227501432 hasConceptScore W227501432C119857082 @default.
- W227501432 hasConceptScore W227501432C121332964 @default.
- W227501432 hasConceptScore W227501432C124101348 @default.
- W227501432 hasConceptScore W227501432C126255220 @default.
- W227501432 hasConceptScore W227501432C149782125 @default.
- W227501432 hasConceptScore W227501432C153180895 @default.
- W227501432 hasConceptScore W227501432C154945302 @default.
- W227501432 hasConceptScore W227501432C177264268 @default.
- W227501432 hasConceptScore W227501432C178790620 @default.
- W227501432 hasConceptScore W227501432C185592680 @default.
- W227501432 hasConceptScore W227501432C198531522 @default.
- W227501432 hasConceptScore W227501432C199360897 @default.
- W227501432 hasConceptScore W227501432C204030448 @default.
- W227501432 hasConceptScore W227501432C207609745 @default.
- W227501432 hasConceptScore W227501432C2776151529 @default.
- W227501432 hasConceptScore W227501432C2776330181 @default.
- W227501432 hasConceptScore W227501432C2778755073 @default.
- W227501432 hasConceptScore W227501432C2781238097 @default.
- W227501432 hasConceptScore W227501432C33923547 @default.
- W227501432 hasConceptScore W227501432C41008148 @default.
- W227501432 hasConceptScore W227501432C43617362 @default.
- W227501432 hasConceptScore W227501432C62520636 @default.
- W227501432 hasConceptScore W227501432C98045186 @default.
- W227501432 hasLocation W2275014321 @default.
- W227501432 hasOpenAccess W227501432 @default.
- W227501432 hasPrimaryLocation W2275014321 @default.
- W227501432 hasRelatedWork W1484676692 @default.
- W227501432 hasRelatedWork W1605380976 @default.
- W227501432 hasRelatedWork W2026386069 @default.
- W227501432 hasRelatedWork W2072266825 @default.
- W227501432 hasRelatedWork W2099406713 @default.
- W227501432 hasRelatedWork W2138356419 @default.
- W227501432 hasRelatedWork W2152221710 @default.
- W227501432 hasRelatedWork W2160997581 @default.
- W227501432 hasRelatedWork W2508604679 @default.
- W227501432 hasRelatedWork W2624386319 @default.
- W227501432 hasRelatedWork W2765149293 @default.
- W227501432 hasRelatedWork W2783517122 @default.
- W227501432 hasRelatedWork W2806772626 @default.
- W227501432 hasRelatedWork W2893078623 @default.
- W227501432 hasRelatedWork W3042818515 @default.
- W227501432 hasRelatedWork W3126187549 @default.