Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275176483> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2275176483 endingPage "662" @default.
- W2275176483 startingPage "659" @default.
- W2275176483 abstract "Imputation of missing items is a usual practice in applied statistics. One of the most common approaches is hot deck. It consists in properly selecting donors from the respondents of a data set, and imputing the donor values to the unobserved ones. This approach aims at obtaining a completed, synthetic, data set that is much easier to analyze. A natural question is: To which extent is the completed data set reliable? In fact, it can be actually used for any kind of analysis if the mechanism that generates imputations coincides with the random mechanism that generates “true” observations. The discrepancy between these two processes is the matching noise (cfr. Paass, 1985). This paper aims at studying the matching noise of the distance hot deck procedure, as well as of some nonparametric alternatives, in the special case of statistical matching (cfr. Rassler, 2002). Let A, B be two samples of size nA and nB, respectively, of independent and identically distributed (i.i.d.) records generated from a P + Q dimensional random variable (r.v.) (X, Z) with joint density function (d.f.) f(x, z). From now on, we will denote by Tc the cth observation of the variate T in the sample C (C = A, B, c = 1, . . . , nC , T = X, Z). The r.v. Z is not observed in A, and is imputed using B as a set of donors via hot deck procedures. Distance hot deck consists in selecting, for each a = 1, . . . , nA, the donor b1(a) ∈ B such that d(xa ,xBb1(a)) = minb∈B d(x A a ,x B b ), where d(·, ·) is a distance function. In the sequel we will confine ourselves to Euclidean distances d(xa ,x B b ) = {(xb − xa )D(xb − xa )}, D being a positive definite matrix. The completed A consists of the records (xa , z B b1(a) ). As remarked in Chen and Shao (2001), distance hot deck provides asymptotically unbiased and consistent estimators for population means as well as for quantiles. No attempt to define the correspondent matching noise has been made. Distance hot deck is nonparametric because it does not require any specific parametric assumption on the d.f. of (X, Z). Furthermore, it corresponds to use the k nearest neighbour (kNN) method with k = 1. It can be easily generalized for k > 1." @default.
- W2275176483 created "2016-06-24" @default.
- W2275176483 creator A5007535647 @default.
- W2275176483 creator A5085643023 @default.
- W2275176483 date "2006-01-01" @default.
- W2275176483 modified "2023-09-24" @default.
- W2275176483 title "Nonparametric approaches to statistical matching" @default.
- W2275176483 cites W583974615 @default.
- W2275176483 hasPublicationYear "2006" @default.
- W2275176483 type Work @default.
- W2275176483 sameAs 2275176483 @default.
- W2275176483 citedByCount "0" @default.
- W2275176483 crossrefType "journal-article" @default.
- W2275176483 hasAuthorship W2275176483A5007535647 @default.
- W2275176483 hasAuthorship W2275176483A5085643023 @default.
- W2275176483 hasConcept C102366305 @default.
- W2275176483 hasConcept C105795698 @default.
- W2275176483 hasConcept C11413529 @default.
- W2275176483 hasConcept C114614502 @default.
- W2275176483 hasConcept C122123141 @default.
- W2275176483 hasConcept C141513077 @default.
- W2275176483 hasConcept C165064840 @default.
- W2275176483 hasConcept C33923547 @default.
- W2275176483 hasConcept C58041806 @default.
- W2275176483 hasConcept C58489278 @default.
- W2275176483 hasConcept C9357733 @default.
- W2275176483 hasConceptScore W2275176483C102366305 @default.
- W2275176483 hasConceptScore W2275176483C105795698 @default.
- W2275176483 hasConceptScore W2275176483C11413529 @default.
- W2275176483 hasConceptScore W2275176483C114614502 @default.
- W2275176483 hasConceptScore W2275176483C122123141 @default.
- W2275176483 hasConceptScore W2275176483C141513077 @default.
- W2275176483 hasConceptScore W2275176483C165064840 @default.
- W2275176483 hasConceptScore W2275176483C33923547 @default.
- W2275176483 hasConceptScore W2275176483C58041806 @default.
- W2275176483 hasConceptScore W2275176483C58489278 @default.
- W2275176483 hasConceptScore W2275176483C9357733 @default.
- W2275176483 hasLocation W22751764831 @default.
- W2275176483 hasOpenAccess W2275176483 @default.
- W2275176483 hasPrimaryLocation W22751764831 @default.
- W2275176483 hasRelatedWork W126266486 @default.
- W2275176483 hasRelatedWork W2059495619 @default.
- W2275176483 hasRelatedWork W2065900908 @default.
- W2275176483 hasRelatedWork W2074879932 @default.
- W2275176483 hasRelatedWork W2097230714 @default.
- W2275176483 hasRelatedWork W2198360267 @default.
- W2275176483 hasRelatedWork W2506885275 @default.
- W2275176483 hasRelatedWork W2614213514 @default.
- W2275176483 hasRelatedWork W2620588607 @default.
- W2275176483 hasRelatedWork W3164841229 @default.
- W2275176483 hasRelatedWork W2962455395 @default.
- W2275176483 isParatext "false" @default.
- W2275176483 isRetracted "false" @default.
- W2275176483 magId "2275176483" @default.
- W2275176483 workType "article" @default.