Matches in SemOpenAlex for { <https://semopenalex.org/work/W2275188812> ?p ?o ?g. }
- W2275188812 endingPage "728" @default.
- W2275188812 startingPage "721" @default.
- W2275188812 abstract "Accounting for technological changes and innovation is important when assessing the implications of rapidly-developing greenhouse gas (GHG) mitigation technologies. Technological learning curves have been commonly used as a tool to understand technological change as a function of cumulative production. Traditional learning curve approaches, however, do not distinguish the direct and upstream, supply chain technological changes by which cost reductions are achieved. While recent advances in learning curves have focused on distinguishing the different physical and economic drivers of learning, forecasted technological changes have not been applied to estimate the potential changes in the environmental performance of a technology. This article illustrates how distinguishing the different effects of technological learning throughout the supply chain can help assess the changing costs, environmental impacts and natural resource implications of technologies as they develop. We propose a mathematical framework to distinguish the effects of learning on the direct inputs to a technology from the effects of learning on value added, and we incorporate those effects throughout the supply chain of a technology using a life cycle assessment (LCA) framework. An example for cadmium telluride (CdTe) photovoltaics (PV) illustrates how the proposed framework can be implemented. Results show that that life cycle GHG emissions can decrease at least 40% and costs can decrease at least 50% as cumulative production of CdTe reaches 100 GW. Technological learning in supply chain processes can further reduce emissions and costs by up to 1–2%. Lastly, we discuss the implications of using this new technological learning framework in the long-term assessment of the costs, environmental impacts and resource requirements of technologies using life-cycle assessment." @default.
- W2275188812 created "2016-06-24" @default.
- W2275188812 creator A5016378280 @default.
- W2275188812 creator A5083397861 @default.
- W2275188812 date "2016-05-01" @default.
- W2275188812 modified "2023-10-10" @default.
- W2275188812 title "A framework for technological learning in the supply chain: A case study on CdTe photovoltaics" @default.
- W2275188812 cites W1492447840 @default.
- W2275188812 cites W1576373160 @default.
- W2275188812 cites W1594949752 @default.
- W2275188812 cites W1971399771 @default.
- W2275188812 cites W1980031965 @default.
- W2275188812 cites W1985936424 @default.
- W2275188812 cites W1988358552 @default.
- W2275188812 cites W1988550741 @default.
- W2275188812 cites W2001755389 @default.
- W2275188812 cites W2006579289 @default.
- W2275188812 cites W2027465478 @default.
- W2275188812 cites W2028305461 @default.
- W2275188812 cites W2029511201 @default.
- W2275188812 cites W2037321228 @default.
- W2275188812 cites W2038599881 @default.
- W2275188812 cites W2041846235 @default.
- W2275188812 cites W2045674320 @default.
- W2275188812 cites W2052681235 @default.
- W2275188812 cites W2058927445 @default.
- W2275188812 cites W2067243643 @default.
- W2275188812 cites W2083534323 @default.
- W2275188812 cites W2087858868 @default.
- W2275188812 cites W2091652006 @default.
- W2275188812 cites W2093975217 @default.
- W2275188812 cites W2099016878 @default.
- W2275188812 cites W2107210445 @default.
- W2275188812 cites W2128695868 @default.
- W2275188812 cites W2131225090 @default.
- W2275188812 cites W2154785729 @default.
- W2275188812 cites W2156944749 @default.
- W2275188812 cites W2158712753 @default.
- W2275188812 cites W2333617135 @default.
- W2275188812 cites W3122992687 @default.
- W2275188812 cites W3124120829 @default.
- W2275188812 cites W384026371 @default.
- W2275188812 doi "https://doi.org/10.1016/j.apenergy.2016.02.013" @default.
- W2275188812 hasPublicationYear "2016" @default.
- W2275188812 type Work @default.
- W2275188812 sameAs 2275188812 @default.
- W2275188812 citedByCount "27" @default.
- W2275188812 countsByYear W22751888122017 @default.
- W2275188812 countsByYear W22751888122018 @default.
- W2275188812 countsByYear W22751888122019 @default.
- W2275188812 countsByYear W22751888122020 @default.
- W2275188812 countsByYear W22751888122021 @default.
- W2275188812 countsByYear W22751888122022 @default.
- W2275188812 countsByYear W22751888122023 @default.
- W2275188812 crossrefType "journal-article" @default.
- W2275188812 hasAuthorship W2275188812A5016378280 @default.
- W2275188812 hasAuthorship W2275188812A5083397861 @default.
- W2275188812 hasBestOaLocation W22751888121 @default.
- W2275188812 hasConcept C108713360 @default.
- W2275188812 hasConcept C111919701 @default.
- W2275188812 hasConcept C119599485 @default.
- W2275188812 hasConcept C127413603 @default.
- W2275188812 hasConcept C134560507 @default.
- W2275188812 hasConcept C137996800 @default.
- W2275188812 hasConcept C144133560 @default.
- W2275188812 hasConcept C154945302 @default.
- W2275188812 hasConcept C162324750 @default.
- W2275188812 hasConcept C162853370 @default.
- W2275188812 hasConcept C171250308 @default.
- W2275188812 hasConcept C175444787 @default.
- W2275188812 hasConcept C18903297 @default.
- W2275188812 hasConcept C192562407 @default.
- W2275188812 hasConcept C206345919 @default.
- W2275188812 hasConcept C2776489442 @default.
- W2275188812 hasConcept C2778348673 @default.
- W2275188812 hasConcept C2778706760 @default.
- W2275188812 hasConcept C31258907 @default.
- W2275188812 hasConcept C34585555 @default.
- W2275188812 hasConcept C41008148 @default.
- W2275188812 hasConcept C41291067 @default.
- W2275188812 hasConcept C47737302 @default.
- W2275188812 hasConcept C542589376 @default.
- W2275188812 hasConcept C6110044 @default.
- W2275188812 hasConcept C86803240 @default.
- W2275188812 hasConceptScore W2275188812C108713360 @default.
- W2275188812 hasConceptScore W2275188812C111919701 @default.
- W2275188812 hasConceptScore W2275188812C119599485 @default.
- W2275188812 hasConceptScore W2275188812C127413603 @default.
- W2275188812 hasConceptScore W2275188812C134560507 @default.
- W2275188812 hasConceptScore W2275188812C137996800 @default.
- W2275188812 hasConceptScore W2275188812C144133560 @default.
- W2275188812 hasConceptScore W2275188812C154945302 @default.
- W2275188812 hasConceptScore W2275188812C162324750 @default.
- W2275188812 hasConceptScore W2275188812C162853370 @default.
- W2275188812 hasConceptScore W2275188812C171250308 @default.
- W2275188812 hasConceptScore W2275188812C175444787 @default.
- W2275188812 hasConceptScore W2275188812C18903297 @default.
- W2275188812 hasConceptScore W2275188812C192562407 @default.